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The Smart Revolution

Smart Phones
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Smart Camera Networks
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Characteristics of Smart-X

HARDWARE SOFTWARE

= Sensing & actuation = Data management
devices » Decision making

= Embedded computing algorithms

= Wide area = Learning algorithms
connectivity

= Optimization and
control
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Smart-X vs Smart-ready-X

Digital advances provide the ICT infrastructure
not the INTELLIGENCE (so far)

Infrastructure will be further enhanced via the loT

Smart-X vs. Smart-ready-X
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Smart-X vs Smart-ready-X

= Digital advances provide the ICT infrastructure
not the INTELLIGENCE (so far)

= |nfrastructure will be further enhanced via the loT

= Smart-X vs. Smart-ready-X

-> Control systems and machine learning are
at the heart of transforming Smart-ready-X to
Smart-X
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Control Systems in the Smart-X Era

More proactive, more planning ahead
More discrete-event, more event-triggered

More machine learning, handling of larger
volume of data, more heterogeneous data

Handling of more uncertainty, fault tolerance

Handling of human-machine interaction
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Fragility

The technological trend is towards:
* more complex and large-scale systems
* more interconnected systems

= more automation and autonomy

However if the data is faulty/inconsistent/missing, this
may lead to:

= wrong decisions or escalation to a catastrophic failure
= fault propagation from one subsystem to another

= Unreliable and untrustworthy automation procedures
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The technological trend is towards:

"« more complex and large-scale systems )
= more interconnected systems more
= more automation and autonomy FRAG"-E/

However if the data is faulty/inconsistent/missing, this
may lead to:

= wrong decisions or escalation to a catastrophic failure
= fault propagation from one subsystem to another

= Unreliable and untrustworthy automation procedures
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Fragility of Interconnected Systems

Fragility is a crucial issue in an interconnected
cyber-physical-social world

Fault Monitoring and Fault Tolerance are necessary
components of Smart-X architectures

Black Swan Theory - Nassim Nicholas Taleb

metaphor that describes an event that comes as a surprise,
has a major effect, and is often inappropriately rationalized
after the fact with the benefit of hindsight (extreme outliers)
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Monitoring and Control
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Fault Scenarios

System/Process Faults
!
Actuator Faults ED
Sensor Faults — S
— Cj P
Communication Faults

Controller Faults
Environment Faults

Malicious Attacks (cyber-security)
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Fault Diagnosis Steps

fault detection
fault isolation
fault identification and risk assessment

fault accommodation
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Key Challenges for Fault Diagnosis

» distinguish between faults and modeling uncertainty or
measurement noise

= exploit spatial and temporal correlations between variables
= handle multiple faults

» |solate faults in a large-scale system (needle in a haystack)
= prevent “small” faults from escalating into a major failure

= accommodate the fault - what to do in the presence of
information about a fault?

- Design smart SOFTWARE to handle faulty HARDWARE
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Key Books on Fault Diagnosis

J. Gertler. Fault Detection and Diagnosis in Engineering
Systems. CRC Press, 1998.

J. Chen and R. J. Patton. Robust Model-based Fault Diagnosis
for Dynamic Systems. Kluwer Academic Publishers, 1999.

R. Isermann. Fault-Diagnosis Systems: An Introduction from
Fault Detection to Fault Tolerance. Springer Verlag, 2006.

S. X. Ding. Model-based Fault Diagnosis Techniques: Design
Schemes, Algorithms, and Tools. Springer-Verlag London,
2008.

M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki.
Diagnosis and Fault-Tolerant Control. Springer-Verlag Berlin
Heidelberg, 2016.
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Interconnected CPS

N interconnected CPS.

I-th CPS: described by the pair (P('),C('))
P : physical part of the /-th CPS,
C") : cyber part of the I-th CPS.
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Interconnected CPS - Single Agent

~
I( 3
'.‘ '. O
Center for Intelligent Systems & Networks



Interconnected CPS
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Objective: Detect and isolate multiple faults that may
occur in one or more CPS
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Problem Formulation

2; = ¢i(@q, ui)+ni(as, uy, ) +B;(E—To) fi(xi, ui)+ > hii(x;)
jeT

where;:

r € ™  state vector
u € M- Input vector

o R x R™ — K™ : Nominal state dynamics
n iR X R™ x RT — R™ : Modeling uncertainty
f i R" X R — R™ . Change in the system due to fault

B(t —Tp) : Time profile of the fault

hij (553) . Interconnection dynamics
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Modeling Uncertainty

The modeling uncertainty m includes external disturbances as
well as modeling errors.

‘ni(xvuat)l < ﬁi(xvuvt)a V(:II,’LL) € @7 Vit 2 Oa

where for each i=1, ...., n, the bounding function 7;(z,u,t) > O
Is known, integrable and bounded for all (x, u) in some compact
region of interest D O D

The handling of the modeling uncertainty is a key design issue in fault
diagnosis architectures:

- need to distinguish between faults and modeling uncertainty

- structured vs. unstructured modeling uncertainty

- trade-off between false alarms and conservative fault detection schemes
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Fault Modeling

The term B(t — Tp)f(x,u) represents the deviations in the
dynamics of the system due to a fault.

o f(xz,u) is the fault function
« The matrix B(t — 1p) characterizes the time profile of a fault
which occurs at some unknown time 1o

B(t —Tp) = diag [B1(t —Top),- -, Bn(t — T1p)]

0 if t<T,

Bi(t —Tp) = abrupt
1 if t>1o

0] if t <Tp

B;(t—Tp) = incipient
1 — e~ @(=T0) if ¢t > Ty

where «; > 0 denotes the unknown fault evolution rate.
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Fault Influence for Distributed Systems

Local Faults

Distributed Faults

Distributed Faults with Overlapping Signature
Propagating Faults
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Fault [solation

Types of FAULT ISOLATION:
o identify the type of fault that has occurred
o identify the physical location of the fault

Class of fault functions f :
f@,u) € F={f'(z,u),..., N(z,u)]
o) = [09) g5 @), -, (05) Tgimu) |

where:
« 07,i=1,---,n is an unknown parameter vector, which is
assumed to belong to a known compact set

gl: R x ™ — N% s a known smooth vector field
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Fault Diagnosis Architecture

» There are N+1 Nonlinear Adaptive Estimators (NAES)
» One of the NAEs is used for detecting and approximating faults

= The remaining N NAEs are isolation estimators used only after a fault
has been detected for the purpose of fault isolation.

Fault Detection and Isolation Architecture

Fault Detection Fault Detection - Alarm
. and Approximation Decision Scheme | | |
Estimator
Activation |
{ - Identification of the
Bank of Fault Fault Isolation fault that has occurre
Isolation Estimators Decision Scheme |
reference
input
Feedback u Nonlinear Plant X
Controller
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Fault Handling

Monitoring
Module

T, t
isol

0 <t < Tp: system is operating in a healthy condition.

= To <t < Tgq: period in which there is a fault, which however has
not yet been detected.

= T4 < t < Tisol : period during which the fault has been detected,

but it is not yet known which particular fault has occurred.

t > Tisol : the fault has been isolated.

K@lO
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Fault Detection and Approximation Estimator

30 = —A%z° — 2) + é(z,w) + f(z,u,0°)

where;
79 € R™ :  estimated state vector

f; R w R x RP — R - Adaptive approximation model

90 c RP - adjustable weights of the on-line neural approximator

A0 = diag(\?,---,29) : estimation poles

»>The initial weight vector §9(0) is chosen such that
f(z,4,0°(0)) =0, VY(z,u) €D (healthy situation)
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Center for Intelligent Systems & Networks ;



Adaptive Approximation Model

* Nonlinear approximation model with adjustable
parameters (e.g., neural networks)

» Linearly parameterized vs. nonlinearly parameterized
= |t provides the adaptive structure for approximating on-
line:

= Local modeling errors

= interconnection dynamics
» unknown fault functions
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Learning Algorithm

0 = Pgo {r°z' D[]}

where;:

O —

— -39 -

state estimation error

The projection operator Poo restricts the parameter estimation
vector to a predefined compact and convex region.

of (z,u,0°)
/= — :
0H0
[V =T c R . Positive definite learning rate matrix

0,01 | O it [9) < @), i=1,...,n
Dles(t)] = { e9(t)  otherwise

regressor matrix

Dead-zone operator
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Detection Threshold

‘G?(t)‘ - |/oteA?(tT)Wi(x(T)a’LL(T),T)dT

< fote_)\?(t_ﬂﬁi(w('r), u(r), T)dr =& (t).

Robustness of the fault detection scheme is the ability to avoid
false alarms. The above threshold make the FD scheme robust.

»In the special case of a uniform bound on the modeling
uncertainty the detection threshold becomes:

D) =5 (1- )
)
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Detectability Conditions

If there exists an interval of time [t;, t,] such that at least one component
f.(x,u) of the fault vector satisfies the condition

t2 A0 (to—7) —a;(7—Tp) 2n;
/tl e~ i \t2 (1 —e 0 )fi(it(T),u(T))d’T > R

(/

then a fault will be detected.

» Result holds for the special case of constant bound on the
modeling uncertainty.

» We are also able to obtain more simplified detectability
conditions, but they are more conservative.

» In general there is an inherent trade-off between
robustness and fault detectability.

~/
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Fault Isolation Estimators

N NAESs are activated for isolation (isolation estimators) after the
detection of a fault

58 — _/\8(58 T 33) + ¢($,U) _l— fS(ZL‘,’U,, 9‘8)
fs(xauags) — [(gl]s_)—rgi(xﬂu)a T (@%)Tgfb(mau)]—r

s=1,---,N,

* Each isolation estimator corresponds to one
of the possible types of parametric faults

: : » Adaptive threshold are designed based on
Learning Algorithm the available information, similar to the concept
of a matching filter

A;L.S = Pos {[jg; (x,u)e; } | - isolation is achieved if every threshold is
v exceeded, except one (the one corresponding
to the fault)

K@lO
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Incipient Fault Isolability

Intuitively, fault are easier to isolate if they are sufficiently
“mutually different” in terms of a suitable measure

RT() = (1 - e TN (09 Tg? (2(t), u(t))
Ar T r
—(0: () "g; (x(), u(®)) , Fault Mismatch Function

rs=1,...,n,r#* s _
The difference between the actual
fault function and the estimated
fault function associated with any
isolation estimator

Fault isolability condition

tr T T
/ e At _T)th(T) dr| > 2 |e; (Ty)| e~ Mt =Ta)

Ty

n /;7" e_Ai(tr_T)[(Rg(T) + e—ai(T—Td)|9‘g'(T)|)
d
Ngi(x(m),u(r)) | + 27 (2(r),u(r), 7)]dr.
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Sensor Fault Diagnosis

= System/Process Faults
-FD
K

= Actuator Faults

= Sensor Faults — b4
e | 5

= Communication Faults

= Controller Faults
= Environment Faults

= Malicious Attacks (cyber-security)
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Interconnected CPS

N interconnected CPS.

I-th CPS: described by the pair (P('),C('))
P : physical part of the /-th CPS,
C") : cyber part of the I-th CPS.
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Interconnected CPS

| .
= P (physical part)
. I
= a nonlinear system 2"
(D — A(I)X(I) _l_j,(l)(x(l)’u(l)J)
known Ioc%ﬁdynamics
4 h(l)(x(l) y C(I)Z(I))
] ] VA
known interconnection dynamics
+ n(')(x('),u('),t)

modeling Fncertainty
e x!"): local state vector

|
|
|
|
|
|
|
|
|
|
|
|
i e u'": local input vector generated by a
I

feedback control agent /") using rt"

e 7z - interconnection vector

~
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Interconnected CPS

= P (physical part)

= Sensor set SU") used for
measuring the linear
combination of states C"x"

yO(t) = COxO (1) +d D () + £ O (t)

e y"': local output vector

e d" : measurement noise

o - fault vector

~
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Interconnected CPS

- CcY (cyber part)

- control agent K" that
generates the input ut
based on some reference
signal r{") the measured

[ —— — i — i — i — i — e — o — . o] — i — i — i — i —— —

output and the transmitted
sensor information S!"

()

N

YO0 =CO20+dO )+ 1)
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Interconnected CPS
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Objective: Detect and isolate multiple sensor faults that may
occur in one or more CPS
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Distributed Sensor Fault Diagnosis Architecture

= C) (cyber part)
“ monitoring agent /\/l(l)allowed

to exchange information with the
neighboring agents SZ(')

Task:
Detection & lsolatlon of multiple
sensor faults in 8

_________________________ | Detection o ( Fropagated sensor
faults in S

~
I( '.‘“ I. O
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Distributed Sensor Fault Diagnosis Architecture

G : global decision logic

collects and processes combinatorially the decisions of the
monitoring agents

Task: Isolation of 3 g :
sensor faults i i ] ? ? :
propagated in the —a 4 i v : Cfﬁ)
cyber layer due to - L v EO /N/' . "
the information | C(ff'ji"'é ¢ ¢ @4@‘0
exchange between : i wﬁqﬁ“‘e’
monitoring agents i | <

| !

| !
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Monitoring Agent

monitoring agent M)

orks ;

nt Systems & Netw:
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Monitoring Agent

(1)
M G/lultiple Sensor Fault Isolation Decision Logia
(1) 7y ry
Qe f pev___Tipew o ipeo T _pw
| |
[Mw)(Mm)[Mm) ()
3. X X}
u(!) J’(I'I) (I) y(f ) u(.r) };(1,3) um y(f,_\})
S(I )
prmmem N [— “—
: i - .3 N
! SU:D i SUZ:2) SZ3) S

The monitoring of the local sensor set SWis decomposed into

N, modules

The module M%) monitors the group of sensors St

L) . L) _ oy 0o | f 0,9 Y
STy =CH VY +dV Y + f K’é‘lcq




Monitoring Agent

(Z)
M Glultiple Sensor Fault Isolation Decision Logig
(1) ry 4
LN P2 I D 'D“ 7 LT
( M(I 1) ) ( M(I 2) ) [ M(I 3) ] ( MI ND )
(1) y ,(.1) (1) y J(1.2) (.r) y ,(1.3) (1) y(f A7)
S(I )
I Jo._. S
! S(I’l) i 8(1:2) S(I’B) ce S(I Np)

./\/l(l a, : g-th module of the /-th monitoring agent

Task: Detection of sensor faults in S(’ q) and/or SZ(’ )
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Monitoring Agent

@ultiple Sensor Fault Isolation Decision Log@
(1)

Y, DU T D TD(M)T DI

______ -l

Co) G G ()
5% X! X,

,(1.1) (J)

I3
y( ) u(z)

I 2
)’ 2) ed

The decisions of the N, modules are aggregated and
processed combinatorially for isolating the combination of
multiple sensor faults that have occurred and inferring the
presence of propagated sensor faults

K@LOC
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Monitoring Module

l,
1D jith residual, 5§j v

C\/l(l ,9)[ 8(ng) j\
' | | Nall.q) .
— ( q) _ y() CJ( )X( Q)’Jej( Q)(l)
D
L;: Eg") £ -x("q): estimation model based on the
. nonlinear observer
.%U,q)
(L Observer ) (1, MSa) | D) )
A ) KD = ADRED 4 D (gD [y

O ‘};z,q) Or-CURTORVO)

b

oy I/’S,_(»{f{;) n L(I,q) (y(l,q) _C(LQ)R(LQ)) (2)
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Monitoring Module

p— IDU!Q) N The j-th adaptive threshold Ey(j"q) (t)
. [ £.9) j is designed to bound the j-th
. F 1 residual 83(,::1) (t) under healthy
:——: 55’@ 8},‘_”‘” conditions

=(1.9) o
C ()bsenir ) ‘ )(/:Hq) (t)‘ (I D (t)
_ t t Y,

) [([) },(I 9)

| N
S‘U )
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Adaptive Threshold Computation

The j-th adaptive threshold can be implemented using linear
filters

£19(1) = HE) [ 7E0),uV©),0+A,200 1) |+ Y9 (1)

20 (t) =E"V(t)+ Hy(s)| E"(t) ]

ECO (1) = H, () 7(X" 2 ©).u (0).1) |+ B (0)

(1,0) (1,9) (1,0)
a: A
H(S)=— g Hi(8) = (lfq) oy H2(8)= . (1)
A, :il +%, +/177I
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Monitoring Module

A py(29) Decision Logic based on

(o ad.2) 7\ aset of Analytical Redundancy
( 4 ] Relations (ARRS)

y® —r - g.a) . U g(l q)
jeg(ha)
2(1.9) .
C Obser\fzr ) gj(l D ‘ ) (t)‘ (I D (t) < O’
N . S y / \

@ 9 residual adaptive threshold

)}
K

u

Pl
U] 54 Under healthy conditions, £(1'9 is

always satisfied o
KLOG




Robustnhess and Structured Fault Sensitivity

Theorem. The distributed sensor fault diagnosis design
guarantees that:

(a) Robustness: If neither the local sensor set S"? nor the
transmitted sensor information y ) are affected by sensor
faults, then the set of ARRs &' 9 IS always satisfied.

(b) Structured fault sensitivity: If there is a time instant at
which £ 7 is not satisfied, then the occurrence of at
least one sensor fault in -9 | | ) is guaranteed.

V. Reppa, M. Polycarpou and C. Panayiotou, “Distributed Sensor Fault Diagnosis for a Network
of Interconnected Cyber-Physical Systems,” /EEE Transactions on Control of Network Systems,

vol 2, no. 1, pp. 11-23, March 2015.
~/
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Monitoring Agent

(1)
M @ultiple Sensor Fault Isolation Decision Logia
(1) Ty 7y 7y
LN DT D DT
[ M(I 1) ) [ M(I 2) ) ( M(I 3) ) [ MI Np) )
A3
ey y(I,l) (1) y (1) y(I 3) (1) y(I,a‘v;)
S(I )
— 3 N S
! l 2 3 " __V
: SI:h i S7:2) 8(1,3) S(I, )

Center
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Example:

S — {S(I){l}}

Local Multiple Sensor Fault Isolation

(1)
Y

s

N

O
[Multip]c Sensor Fault Isolation Decision Logicj

DU 1)‘

I.___

N

ID(I 2) D(J 3)

(o) (s ) ( )

St {S(I){Z} S(I){3}} u“) D m A U) }(;3)
S(' 3) {S('){3}} SO
o pr——
SUD S I S i
| R —— o
fl(l) fz(l) f3(l) {fl(l)’fz(l)} {fl(l)’f3(l)} {fz(l)ifg(l)} {fl(l)’fz(l)’f3(l)} fz(l) {fz(l)’ﬁ(l)}
g1 11010 0 1 1
20101111 1 1
g1 0101 1
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Local Multiple Sensor Fault Isolation

£O [ £0 ] 0 {fl(l)’fZ(l)} {fl(l)’fB(l)} {f2(|)1f3(|)} {fl(l)’fz(l)’f3(l)} £ {fz(u)’]_;ﬂ)}
g1 1100 1 1 .
g1 011 1 1 1 .
egrjojoju 1 1 1| 1
8
D(t) =1
_O_
' i : (M ) — I |
Diagnosis Set: T (t)_{{fl()’fz()}}
Decision on the presence of sensor faults in yﬁ')
D(')(t): 0, 1:z(l)gzjs(l)(t) ~
UL tPen  KRLOG




Local Multiple Sensor Fault Isolation

fl(l) fz(l) f3(l) {fl(l)’fz(l)} {fl(l)’f3(l)} {fz(l)’fg(l)} {fl(l)'fz(l)'fs(l)} 10 {f(l)’]:ﬂ)}
gl 11010 1 0 1 1 1
A1 01111 1 1 1 1
¥ 011011 1 1 1 1
T
D (t)=|1
_1_
Diagnosis Set:
I I | | I | | I |
Ds()(t)Z{{fl(),fs()},{fl()’fz(),fs()},fz(),{fz(),ﬁ“}}

|

Decision on the presence of sensor faults in y§ )

f(l) éD(')(t)
(N (N

e (1)

D) CI@
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Global Multiple Sensor Fault Isolation

“"Z_-‘,',;-‘
3
|
_i_ b
a
SN
o

ks

‘
@ B

2

&
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Global Multiple Sensor Fault Isolation

Observed pattern of sensor faults in transmitted sensor

. . . T
information: D, (t) =[Dz(l) t) D2(t) --- DZ(N)(t)}
ML
M |
(3)4L |
y |
4 I f5(1) f1(2) f4(3) { f5(1), f1(2)} { f5(1)’ f4(3)} { f1(2)’ f4(3)} { f5(1), f1(2)’ f4(3)}
| ) * *
I (1) E 1 0 1 1
ys’ B N B B B *
\ 4
» (3) * * *
we){g) I
A D®
[(2) 4
N D@ . _ .
z Semantics of ‘*’: the sensor fault involved in

the ARR can explain why the ARR is violated, while the
ARR may be satisfied although the corresponding fault
has occurred

~/
Center for Intelligent Systems & Networks ;



Learning Approaches for Fault Diagnosis

» Reduce adaptive thresholds by reducing the
bound of the modeling uncertainty using learning
techniques.

= Design and analysis of an adaptive approximation
methodology to learn the modeling uncertainty

V. Reppa, M. Polycarpou and C. Panayiotou, “Adaptive approximation for multiple sensor fault
detection and isolation of nonlinear uncertain,” /EEE Transactions on Neural Networks and

Learning Systems, vol 25, no. 1, pp. 137-153, January 2014.
~/
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Fault Diagnosis and Cybersecurity

Targeted faults

Early detection is crucial

Sensor placement is a key issue

Need to consider the impact dynamics
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Application Example: Smart Buildings

Energy
Smart meters,
demand response

Lighting
Occupancy sensing

Water

Smart meters, use
and flow sensing

HVAC

_ Fans, variable air
Fire volume, air quality
Functionality checks,

detector service Elevators

©

Maintenance,
24/7 monitoring @ performance
Condition monitoring, ;
parking lot utilization Access and
security

PEHV charging > Badge in, cameras,
Charging of hybrid integration perimeter,
and electric vehicles doors

Credn: IBM

K@l0
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How critical are buildings?

= 48% of energy consumption is for buildings
(27% for transportation; 25% for factories)

= 76% of electricity consumption is for buildings
(23% for factories; 1% for transportation)

= 87% of our time is spent indoors
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How critical are buildings?

= 48% of energy consumption is for buildings
(27% for transportation; 25% for factories)

= 76% of electricity consumption is for buildings
(23% for factories; 1% for transportation)

= 87% of our time is spent indoors
= 6% in automobiles and public transportation
= 7% outdoors
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The Transformation of Buildings
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The Transformation of Buildings
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The Electronic Transformation Inside

Sensors (more self-aware)

Actuators (more automation)

Intelligent decision making (energy efficiency,

safety and security, fault diagnosis, etc.)

Communication devices (building to user;
user to building; building to building; etc.)

K@LOG




The Electronic Transformation Inside

= Sensors (more self-aware)
= Actuators (more automation)

» |ntelligent decision making (energy efficiency,
safety and security, fault diagnosis, etc.)

= Communication devices (building to user;
user to building; building to building; etc.)

-> Internet of Things (loT)

KLOG




Motivation for Smart Buildings

= Need to monitor and control:
» indoor living conditions and safety of the occupants
» energy consumption of large-scale buildings

* The technology is available (smart-ready):
= building automation is well established
» Cyber-physical systems for smart buildings
= sensing and actuation devices are widely available

- Need to develop smart software to enable the
coordination and scheduling of actions for handling
dynamic and uncertain environments

KLOG




Topics pursued at KIOS Research Center

* KIOS Research Center for Intelligent
Systems and Networks was founded in 2008

« Currently about 50 researchers working on
Monitoring, Control and Security of Critical
Infrastructure Systems

 Awarded a TEAMING project from H2020 to
upgrade to a Center of Excellence for
Research and Innovation (more than €40M)
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Smart Buildings Topics pursued at KIOS

 Distributed fault diagnosis and control of
HVAC systems

 Contamination event detection and isolation
in large-scale buildings

« Security surveillance using smart camera
networks

« Cognitive agents for on-line reconfiguration
of in smart buildings
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Topics pursued at KIOS Research Center

Distributed control and fault diagnosis of large-
scale HVAC systems

e V. Reppa, P. Papadopoulos, M. Polycarpou and

C. Panayiotou, “A Distributed Architecture for storageTanL‘FL‘ Heat Pump

HVAC Sensor Fault Detection and Isolation,”

IEEE Transactions on Control Systems Condenser

Technology, vol. 23, pp. 1323-1337, July 2015. Zone1 Uy L Zone 5 Us
H {

* V. Reppa, P. Papadopoulos, M. Polycarpou, s A AS)

and C. Panayiotou, “A Distributed Virtual (A /A 2

Sensor Scheme for Smart Buildings based on s Uy i Zmeﬂ/J

Adaptive Aproximation,” Proceedings of the el — A %

International Joint Conference on Neural | 3 NG

Networks, World Congress on Computational | Zone N | :l/,’: Zone N-l:L//r= §=_='] 200 71 g)

uN

Intelligence (IJCNN 2014), pp. 99-106, July

|
| AN Uy e u,
2014. S i Ll
| ______
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Topics pursued at KIOS Research Center

 Contamination event detection and isolation in
large-scale buildings

e M. Michaelides, V. Reppa, M. B o) SR

Christodoulou, C. Panayiotou and M. N
Polycarpou, “Contaminant Event e e . ——
Monitoring in Multi-zone Buildings Using B o oz
the State-Space Method,” Building and el e
Environment, vol. 71, pp. 140-152, —— = =
January 2014. (2014 Best Paper Award). enm———— 1 o |
e D. Eliades, M. P. Michaelides, C. ——— Tas T
Panayiotou and M. Polycarpou, rm— ] TR 2
“Security-Oriented Sensor Placement in [ rocomemens | J I 6%
Intelligent Buildings”, Building and — T o b
Environment, vol. 63, pp. 114-121, | m{ — 1 il ES—
March 2013. S—— K@LOG| |4 i

~/

Center for i



Topics pursued at KIOS Research Center

« Security surveillance using smart camera networks

e C. Laoudias, P. Tsangaridis, M. Polycarpou, C.
Panayiotou, C. Kyrkou and T. Theocharides,
“'Cooperative Fault-Tolerant Target Tracking in =}
Camera Sensor Networks," Proceedings of the !
IEEE International Conference on
Communications (ICC’2015), June 2015.

 C. Kyrkou, C. Laoudias, T. Theocharides, C.
Panayiotou and M. Polycarpou, "Adaptive
Energy-Oriented Multi-Task Allocation in

100 F

0F

Smart Camera Networks", IEEE Embedded Bf
Systems Letters, vol. 8, no. 2, pp. 37-40, June .
2016. ol S
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Topics pursued at KIOS Research Center

« Cognitive agent for on-line reconfiguration in
smart buildings

* G. Milis, D. Eliades, C.G. Panayiotou and M. R
Polycarpou, “A Cognitive Fault-Detection *—55
Design Architecture,” in Proceedings of {1 @ v '
IEEE World Congress on Computational m % ) | -
Intelligence (WCCI’2016), July 2016. | *I]E] I
* G. Milis, C.G. Panayiotou and M. —L f: _
Polycarpou, “Semantically-Enhanced _mLﬁgJ L 9
Online Configuration of Feedback Control — | & B
Schemes,” IEEE Transactions on @ r i
Cyb tics, 2017 (t : |
ybernetics (to appear) | @ B |
el
i
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Topics pursued at KIOS Research Center

HVAC systems

 Contamination event detection and isolation
in large-scale buildings

[- Distributed fault diagnosis and control of }

« Security surveillance using smart camera
networks

« Cognitive agent for on-line reconfiguration of
in smart buildings

K@LOG




HVAC Description

HVAC systems consist of:

A number of electrical and mechanical components for
Heating (i.e., boilers, heating coils, heat pump)
Cooling (i.e., cooling towers, chillers, cooling coils)
Ventilating (i.e., fans, supply/return ducts, mixing boxes)
A number of building zones (i.e., interconnected or not)

the dynamics of a zone in the building are affected by the dynamics of their
neighbouring zones

Types of faults in HVAC systems:

actuator/process faults (i.e., fouled heat exchangers, stuck dampers, leaking
valves, broken fans)

sensor faults (i.e., drifting, stuck-at-zero),
communication faults (i.e., wire break).

K@lO
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Faulty Situations in HYAC Systems

The recovery of faulty situations in HVAC systems:

shutting down the operation of the system (inconvenient and possibly
ineffective from the viewpoint of energy)

reconfiguring the controller(s) via a fault tolerant control scheme, using the
outcome of a fault detection and isolation mechanism

Early diagnosis and accommodation of faults is critical since
local faults effects may propagate from a local subsystem to
neighbouring subsystems

the physical interconnections

the distributed control scheme (local controllers may use information

transmitted from neighbouring controllers to achieve the best possible
tracking performance)

~/
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HVAC System Description

Heat Pump

Storage Tank

Condenser

— Electromechanical part

For cooling operation:

_— e — — ——_— —

Replace Heat pump
with Chiller

Zone 1 U, Zone 2 liz Zone 5 U,
Asza H Ao (A Building Zones
<
Ajl?ﬁ A:I,ZS GC)
o
Zone 3 SouT ™ | Zone6 |, < Door
E—» 7 A\m“l
: u6
I A:I,46
ZoneN-2 | / e U == éii;
_ N-2 \ u , ,
: i . < Fan-coil unit

%Eé Zone 7 W

= 4

~/
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HVAC System Description

P

Zi

Zone 1 U, Heat Pump
Sto Ta ’
ﬂ Condenser ?‘— st
T,0 U 0 o0 8 '
~ C, (T (D) =T, (O, (t)— C. =(T, (1) = Ty (1))
+hA”i T Za (T, (®)-T, (t))+ -T, (t)
C, z el zI
. C
b L > san (0T, ()

B[ H

~/
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HVAC System Modelling

Temperature nonlinear dynamics for water in the storage tank:

det (t) . Ust,max asz —
e RO U OV (T, 0T, ()

a‘St

STO NN

ST 0T, 0)+

st st

Performance coefficient of the heat pump

l—l— l— Tst (t) _To (t) j ’ -I-St (t) _To (t) < ATmaX
P, (T, (1) =+ AT,,
1, T (1) - T, (t) > AT,

p = (Pmaa: — 1)

M. Zaheer-Uddin and R. Patel, “Optimal tracking control of multizone indoor environmental spaces,”
Journal of Dynamic Systems, Measurement and Control, vol. 117, no. 3, pp. 292-303, 1995.
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HVAC System Modelling

Temperature nonlinear dynamics of air in the i-th zone

dT, (1) _ Ui a8,
L Zi ~Toms (1))
+hci T.()-T, (t»+—2a (T, (0 -T,,(0)
2 z IEN Z'
/Oalr p ngn(T (t) T (t)) AdT (t)\/z(cp—cv) z
K— zi jek
CZi :paiGCVZi

air heat capacity

~n/
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HVAC System with Feedback Control

@) @) 1)
Yif o | % 5@ —’-y
local linear and nonlmear dynami

1 4
YOy AT 9 et <@ O (0
—h® (Xrgi)e(t)nxéaj(\dr))jynamlcs

- OV Q) 0 (t_ )

(2)
Y ret
0 nown |sturbances iellng uncer@aingy| alﬁ
_|_
(iLf 5) (i)
+ refer S|gna (t) 1

WOy UD (U (')(t)
y O =x gétrL<'31t<;f—‘f‘manent (t)
s<'> y<'><t> O @) g 100,y

permanent
sensor fault

v
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HVAC System Modelling

HVAC temperature dynamics represented in nonlinear state space

form _ _ _
local linear and nonlinear dynamics
/o

S8 X (t) = ASXS (1) + g° (X (t),d® (t))us (t)
mterconnectlon dynamics known disturbances  modeling uncertainty
r —

+he (¢ (), x(®),u() + 7°(a° (t)) T O

local linear and nonlinear dynamics
OO (1) = AOXO (1) + gV (¢ (1), XV @)u? (t)

mterconnectlon dynamics known disturbances  modeling uncertainty
—

OO+ @)+ 6

N/
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Nominal Distributed Control

Distributed control laws:

. 1
Control law for Y.° - u. (t) =

g°(x*(t),d*(1))

| —AC (1) = h° (¢ (1), X(),u 1))

—n°(d° (1) + ks[ Yur () =X (t)} + Vret (t)}

1
g (x* (1), x" (1))

Control law for Z(i): u(t) = [—A(i)x(i)(t) —hP(xP(t), x(t))

AP O) k| Y ©) =XV ) |+ Vet (©)
reference signal

Sensor’s Structure:
u*(t) =u;(t)+ . (t),

S* iy (t) =x(t) +n°(t) + £ (1), Faults in Actuators: ) co
SOy )= xO ) +nO )+ O (1), u™(t)=u; () + f,7(1)
permanent gce{l:r;?gre ?;ult

sensor fault

~n/
[lavernotnpio Korpou I( ‘ lo
University of Cyprus .s Sooss & Sbweila



AP
N

Distributed Sensor Fault Diagnosis Scheme

[lavemotnpio Konpou
University of Cyprus

g\/[(l) ) 7O (/\/l(z) )
Distributed Fault I RENESIS—. > M Distributed Fault
Isolation s R e g i = Isolation
2
(1)T I’(CQ) (2)?
I ')
| |
Local Fault Local Fault
Identification Identification
350 (lﬁ (1 (2) (1) (2) @),
N\
Dlstnbuted Fault o Dlstnbuted Fault
Detection 5 Y Detection
o 1
1
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Distributed Sensor Fault Diagnosis Scheme

40 W

[lavermotmpio Konipou
University of Cyprus

2(2)

M(l) ) M (A4 )
I (M
Distributed Fault I Ry o 1 =»( Distributed Fault
Isolation -————— e —— Isolation
y ¥ 1(2)
[(l): K2 ](2)'
|
Local Fault Local Fault
Identification Identification
e alpel,e
ol Dlstnbuted Fault
Y Detection
\ A
2/
y(Z) u( )
(1)
X >

y (1) - X" (1)

()u (t)
10(1))
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Distributed Sensor Fault Diagnosis Scheme

Distributed Fault Detection:
Analytical redundancy relation (ARR): £ | ef,i)(t) I< Ey(i) (1), M (l)
Boolean decision signal:

(i) i) _ N( —(i
DO (1) = 0t<ty 0 =inf{t>0:&l®) > " (1)}
Lt>tY

Residual generation: gy) (t) = yO (t) — X" (1)

Distributed nonlinear estimator:

X (t) = AP0 1)+ g (y* (), yO ) 1)+ (yO (1), y,. (1))
@O 1)+ L (v t) - %O (1)),
v, ©=[yPm:jex]

~n/
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Distributed Sensor Fault Diagnosis Scheme

Adaptive threshold: :
§y(i) _ p<i)e—z“>t7(i) e ON L: p(i>e—z<”(t—r) (‘ L(i)‘ﬁ(n e M (l)

+g® (0, 7°,u®)+ O (ﬁ(i),ﬁ/q YO Yy ))dr,

|h(l) < (I)ZAd ,U(I)(y(l) y(J))+C Za”n(l) _h(l)(n(l) nlq’y(l) qu)
ek z; 1K

—(l) (l) (1) _—(l)‘ y(J) 3y(')‘ 7 (1) ‘y(l)‘ —(l)

|eA,(_i)t < p(i)e—ﬂ(i)t

~/
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Distributed Sensor Fault Diagnosis Scheme

7\4(1) ) M (AA2) N S
I (M ) (D) 1Y)
Distributed Fault B A g o =»( Distributed Fault : (():)U-l:- ﬂa:.() (t))
Isolation -—|—————— - Isolation
(2)
1 K2 I(z)|
(i) (’[)
Local Fault (')
Identification I_S
|
af, @lpel,o |
P |
Distributed Fault ) ol Dlstnbuted Fault
Detection Jq ) Y \ Detection }
A A A
g )Y Y,
u(l) y(l) y(2) u(z)
(1) D o)
2 —
x()
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Distributed Sensor Fault Diagnosis Scheme

Local Fault Identification:
ARR’s: Ea(li) | g(l)(t) < —(I)(t) M (i)

EV el ) <D (),

Boolean decisions functions:

o) {O,t<t(” | {0,t<t,‘i) tO =inf{t =t$ | 1) > 20 )}
10 (t) =

|
Lt>t] ; Lt>t t0 =inf{t=td 0 () > 20 (1)}

Residual generation:
g, (1) =y" () -% (1),
V(0 =y )-8 - 12,

~/
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Distributed Sensor Fault Diagnosis Scheme

Local Fault Identification:

Distributed adaptive nonlinear estimation scheme:

M (@)

nonlinearj\estimator

HLO0 M)+ Q0 ) 10 0)

Ya

adaptive filter

201 =A% ©) + g (v (), yO )P O + £ 1) + h (yO 1), Vi, ) +7(d? (®)

adaptive law
N

0= AP0 M + 9" (.Y M), 100 =000 DY & (t)j,

nonlinearAestimator

201 =A% 1) + g (v 1),y O - £ OO 1) +hO (v ) - £90), Vi, ) +5(d® (®)

FLO0 (1) + QP (1) FO 1),

adaptive filter

Q00 =A"Q0 (1)~ L + 500 1) - p Y A, E(y0 - F0,y0), £00) =0 @0 @) +)DO [ (1]

= X0

adaptive law

~
]
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Distributed Sensor Fault Diagnosis Scheme

O (AP )
R B Distributed Fault
Isolation Je|lecemaam == - Isolation
](2) y ¥
](1)' K2 ](2):
i
Local Fault Local Fault
Identification Identification
o “ (lﬂ‘ (IT T ‘I‘ (15[‘ e p(z)I e
| L >
1stnbuted Fault ) Distributed Fault
Detection Y Detection
A y(z) \ A A j
u(l) y(l) y(z) u(z)
1 i )
P
e S > : 3
x( )
” L S - R P o< s
Mgt Tlavemompio Konpou

A University of Cyprus
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Distributed Sensor Fault Diagnosis Scheme

(MD 1 e N

Distributed Fault o s s i =»( Distributed Fault
Isolation P SEpp——— - Isolation

1
(1)
=

1
1(2)l
] i
Distributed Fault Isolation:

i T
Observed fault pattern of propagated sensor faults:l, (t) :[|}(<Jj) t):jek u{i}]
Fault isolation signature matrix F¢’

§1) gz) .9(3) §1,2) 8(1,3) §2,3) 5(1’2’3)
i, 1 * * 1 1 * 1
e, | * 1 * 1 * 1 1
ko, | * * 1 * 1 1 1
f(l,z):{fa),f(Z)} f(l,s):{fa) f<3>} f(z,S)Z{f(Z) f<3>} f(1,2,3):{f<1) £ f(s)}

[lavermotmpio Konipou
University of Cyprus
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Simulation Results

Consider a seven-zone HVAC system where the architectural arrangement of
the seven zones is presented by the diagram

Heat Pump

PARAMETERS OF THE SEVEN-ZONE HVAC SYSTEM

Storage Tank
p4-Ug Symbol Value Units
Zone 1 Ul Zone 2 U2 Zone 5 U5 aZi ) | 5{ 1; 2; 3, 4, 5, 6, 7} 740 kJ/hOC
E ¢ 8212, 8z13, B2y B2y 75 Bzggs Azgys 2561 B2y 0 kJ/h°C
A A A ay i) KIkg°C
v asz 0.6 kJkg°C
. 3@“ [ S = Cq 837 kJ°C
Tl Y Cp 1.004 kJkg°C
= s Cv 0.717 kJkg®C
| Zone N-2 |L/ / D’:UN—Z '\'\ U4 éig lair 1.225 kg/m3
L — e ’L; %EIJ C;,11,234,5,6,7} 370 kJ°C
| Zone N :l/// LZoneN I:L/// Zone 7 M Ui,max, i q 1’ 2’ 3’ 4’ 5’ 6, 7} 3700 kg/h
| Uy ~ Una u, Ut max 27.36 x10* | kJh
| H - H e H Prax 35
| ] DTrnax 45 °C
____________ Ayi, i €1,2,3,4,5,6,7} 120 m?
h 8.29 W/mPC
Ad 12, Ad 13, Ad 24, Ad3a 2.60 m®
Ad 45, Ad,46, Ad a7, Ad,se, Ade7 2.60 m°

[lavemotno Komnpou
University of Cyprus
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Simulation Results

= Consider a seven-zone HVAC system where the architectural arrangement of
the seven zones is presented by the diagram

Zone 1 U;

Zone 2 U2

Az

Zone 5 U5

Ai,45

|
Zone N-2 /
L ” Un-2 N
Zone I\T: ¥ Zone N-11: ¥
L-" L-"
~< Uy

Zone 6 A,

Zone7“y
>

[Tavermotnpio Kurnpou
University of Cyprus
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Simulation Results
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Simulation Results
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Simulation Results

= Consider a 83-zone HVAC system where the architectural arrangement of the
83 zones is presented by the diagram

Z-45 | Z-50 249

Papadopoulos M. P., Reppa V., Polycarpou M. M., Panayiotou C., “Distributed Diagnosis of Actuator
and Sensor Faults in HVAC systems,” IFAC World Congress 2017.
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Simulation Results

= Multiple Faults occurring consecutively

e | PR =2) =-30%uY

z.7 Z-6 Z-11 Z-12 Z-11 Z-16 Z-21 Z-22

z-8 213 Z-18 23

Z-9 Z-14 Z-158 2208 Z-19 | z-24 | Z-25

_____ Z-83

f Ot =25)=20%y?

ref
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Simulation Results

Multiple Fault Scenario

Actuator faultin =® . fP(tP =2)=-30%u®”
Sensor fault in 8(3) . fs(3) (t$3) _ 25) _ Zo%y(3)

ref

The parameters of each subsystem are:
a, = 7401 4{4,.. ., N},aZij =50,a, =12,a, =0.6,C, :837OO,CID =1.004,
C,=0.717, p,, :1.22,Czi =370,U, _ =3700,ie{l,...,N},U = 27.36x10°, p=2.5,
AT .. =45, ANi =120,ie{l,...,N}, h=8.29, Adi,- =1.95,ie{l,....,N}, je

i, max st,max

It is assumed that the exogenous uncontrollable signals are constant

d’ =10°C,d; =5°C,d” =5°C,d” =10°C,ie{l,...,N}

The modeling uncertainty in each subsystem I'” =10%d, sin(0.1t),
r™ =10%d" sin(0.1t)

N/
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Simulation Results

= Have a look at the distributed monitoring agents located at:
Zones {1-10, 81, 82, 83}
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Simulation Results
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Simulation Results

Time (hours) Time (hours)

N [Tavernotpio Konpou 2\
{ University of Cyprus ( ‘log

of Inteligent § ms & Netw:



Simulation Results

* Local Fault Identification in Zone 1:

MI)
10 : . 1
— || co)
8 ....... gg) (00)
- _IC(Ll)
6L
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Simulation Results

» Local Fault Identification in Zone 3:

10 ~

25 3 35 4 25 3 35 4
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Remarks on Fault Diagnosis for HVAC Systems

A distributed fault diagnosis (FD)methodology for isolating
actuator and sensor faults in a multi-zone HVAC system is
presented.

The proposed architecture relies on the deployment of several
distributed monitoring agents, which are allowed to exchange
information.

Every agent is designed to detect the presence of faults, identify
the type and infer the number and location (local or propagated
faults).

~n/
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Concluding Remarks

Monitoring and security of interconnected
cyber-physical systems is a key area of growth

Fault diagnosis will play a key role in big data
computing and Internet of Things (loT)

Trend towards more sensors but cheaper
sensors - more susceptible to faults

Need for smart software to address faulty
behavior of hardware
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