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Motivation

In the next few years, we will see a dramatic increase of (multi-)robot applications

Today: Tomorrow:
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Programming such tasks seems to be infeasable.

Indus gerous Env.

Can a robot learn such tasks by trial and error?

http://www. ackkaptercom/ ..
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Reinforcement Learning (RL)

Markov Decision Processes (MDPs):
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Reinforcement Learning (RL)

Markov Decision Processes (MDPs):

- m(als)
Ty ”(3) ) reward function

r(s,a)

e[ transition dynamics
_54_+ r(s,a) p(s']s. a)
i‘ St41{_ p(s'|s; a)

Stochastic Policy (a|s)

« Implicit exploration
Deterministic Policy LL(S)
« explicit exploration needed in addition

Learning: Adapting the policy 7 (als)/u(8) of the agent



Reinforcement Learning

Objective: Find policy that maximizes long term reward J;

%

Infinite Horizon MDP:

¢
J’Tl‘ — E’ﬂ' Z’Y Tt
| t=0
 Discount factor ~

Tasks:

e Stabilizing movements:
Balancing, Pendulum Swing-up...

e Rhythmic movements:
Locomotion (tevine & koltun, icmL 20141, Ball
Paddi NE [Kober et al, 2011],

Stanford . Peters ot al Deisenroth et. al.

T = argmax J,
7

Finite Horizon MDP:

Jﬂ-:Eﬂ- Tt

Tasks:

Stroke-based movements:
Table-tennis muiing et al, URR 2013], Ball-
in-a—Cup [Kober & Peters., NIPS 2008], Pan-

Flipping ikormushev etal, 1ros 2010, Object
I\/Ianipulation [Kromer et al, ICRA 2015]

Peters et. al. Kormushev et. al.



Reinforcement Learning

Important Functions:

* V-Function: Quality of state s when following policy T
Infinite Horizon MDP: Finite Horizon MDP:
o0 T
VT(s) =E; Zf}/hrh(sh,ah) St = 3] Vit (s) = E; Zrh(sh,ah) St = s]
h=0 h=t

 Q-Function: Quality of state s when taking action a and following policy afterwards

Infinite Horizon MDP: Finite Horizon MDP:
o0 T
QW(‘S?a’) :Eﬂ' Z’thh(sfwa'h) St = §,Q¢ _a’] Q?(Sva’) :Eﬂ' Zrh(shaa’h) St = S§,0¢ _a’]
h=0 h=t




Robot Reinforcement Learning

Challenges:
Dimensionality:

e High-dimensional continuous
state and action space

* Huge variety of tasks
Real world environments:
* High-costs of generating data
* Noisy measurements
Exploration:

* Do not damage the robot

* Need to generate smooth
trajectories




Robot Reinforcement Learning

Challenges: Value-based Reinforcement Learning:
Dimensionality Estimate value function:
Real world environments e.g. Q(s,a) =r(s,a)+~Ep[V(s')|s,al
Exploration * Global estimate for all reachable states

* Hard to scale to high-D

e Approximations might , destroy” policy
Estimate global policy:

e.g. ™ (s) = arg max Q(s,a)

e Greedy policy update for all states

* Policy update might get unstable

Explore the whole state space:
exp(Q(s,a))
> o exp (Q(s, a))

* Uncorrelated exploration in each step

e.g. m(als) =

* Might damage the robot



Robot Reinforcement Learning

Challenges: Value-based Reinforcement Learning:
Dimensionality Estimate value function
Real world environments Estimate global policy
Exploration Explore the whole state space

POI icy Sea rCh M EthOdS [Deisenroth, Neumann &Peters, A Survey of Policy Search for Robotics, FNT 2013]

Use parametrized policy Correlated local exploration
a~ w(als;0), O ... parameter vector e.g. 0; ~N(0|uy,Xo)

e Compact parametrizations for

e Explore in parameter space
high-D exists ’ P ’

, e Generates smooth trajectories
* Encode prior knowledge

Locally optimal solutions

d.J
e.g. O,.cv = 0,14 + Ozd—ee

* Safe policy updates
10 * No global value function estimation



Policy Search Classification

Yet, it's a grey zone...

Episodic Actor Critic, ,
REPS, MORE PILCO Natural Actor Critic PCo(I)irc]:i/eI’E\e/i;It\i/gn LSP]
MOTO
Direct Policy < > Value-Based
Search RL
Evolutionary Policy Model-based REPS Advgntage DQN, Q-Learning,
Strategies, Gradients, PS by Trajectory Weighted Fitted Q
CMA-ES eNAC, TRPO Optimization Regression

Important Extensions:

® CO nteXtU a | POl |Cy Sea rCh [Kupscik, Deisenroth, Peters & Neumann, AAAI 2013], [Silva, Konidaris & Barto, ICML 2012], [Kober & Peters, IJCAI 2011], [Paresi &

Peters et al., IROS 2015]

* Hiera rCh ore | POl ICY Sea rCh [Daniel, Neumann & Peters., AISTATS 2012], [Wingate et al., lJCAI 2011], [Ghavamzadeh & Mahedevan, ICML 2003]

11



Outline

Taxonomy of Policy Search Algorithms

Model-Free Policy Search Methods
* Policy Gradients
* Natural Gradients
e Exact Information Geometric Updates
* Success Matching

Policy Search for Multi-Agent Systems

12



Policy Search Pseudo Algorithm

Three basic steps:

Explore: Generate trajectories ,7.[7:] following the policy Tk

Evaluate: Assess quality of trajectory or actions

Update: Compute new policy Tr+1

Reward
function

return/policy

actions

13



Taxonomy of Policy Search Algorithms

Trajectory-based:

14

Use trajectories and parameters
interchangeably

T~ p(Tiw) = 0; ~ 7(6;w)
Explore: in parameter space at the
beginning of an episode
« Search distribution m(6;w)
* w... parameters of search distribution
.« a = pu(s;0)... deterministic policy
Evaluate: quality of trajectories
T; by the returns R

T

R =", D= {gijm}

t=1

Action-based:

Explore: in action-space at each time
step

a; ~ m(a|s:; 0)

e stochastic control policy

Eva'luat.e: guality of state-action pairs
(i, a\) by reward to come

T
QEL] — Zrha D = {SLZ]: a’gb]v 1[5%]}
h=t



Taxonomy of Policy Search Algorithms

Trajectory-based

Properties:
* Simple, no Markov assumption
e Correlated exploration, smooth trajectories
 Efficient for small parameter spaces (< 100)

* £E.g. movement primitives

Structure-less optimization
= Black-Box Optimizer”

15

Action-based

Properties:
e Less variance in quality assessment.
* \Vlore data-efficient (in theory)
* Jerky trajectories due to exploration

e Can produce unreproducible trajectories for
exploration-free policy

Use structure of the RL problem
=decomposition in single timesteps



Taxonomy of Policy Search Algorithms

Trajectory-based

Algorithmes:

16

Evolutionary Strategies

PE‘PG [RUckstiess, Sehnke, et al.2008]

MORE [Abdolmaleki, et al.2015]

Episodic REPS (paniel, Neumann & peters, 2012)
PI12-CMA [Stulp & Sigaud, 2012]

CMA-ES tHansenetal, 2003)

Natural Evolution Strategy iwiestra, schaut, peters &
Schmidhuber, 2008]

Cross-Entropy Search mannor et al. 2004

Action-based

Algorithms:

Natural Actor CritiC (peters & schaal 2003]

Trust Region Policy Optimization

[Schulman et al., 2015]

M OTO [Akrour et al., 2016]
Policy Gradient Theorem / GPOMDP

[Baxter & Bartlett, 2001]

2nd Order Policy Gradients (rurmston & sarber 2011]

Deterministic Policy Gradients siver, Lever etal
2014]



Trajectory-based policy representations

Parametrized Trajectory Generators
* Returns a desired trajectory 7
7" = qi.p = f(0)
* Compute controls u¢ by the use of
trajectory tracking controllers

v' Low number of parameters

v' Sample efficient to learn

x No sensory feedback

Examples:

* Splines, Bezier Curves (miyamoto et al., Neural Networks 1996}, [Kohl & Stone., ICRA 2004], ...

* Movement Primitives [Peters & Schaal, IROS 2006], [Kober & Peters., NIPS 2008], [Kormushev et al., IROS 2010], [Kober & Peters, IJCAI 2011]
1 7 [Theodorou, Buchli & Schaal., JMLR 2010]



Action-based policy representations

Deep Neural Networks:
* Directly computes control output
m(als;0) = N( p(s) %)
N——
Deep NN
v’ Less feature engineering

hidden layer 1 hidden layer 2 hidden layer 3

input layer

v’ Incorporate high-dimensional PSS .f‘%*W;

feedback (vision, tactile)

. = ' ﬂ!._‘-%\.‘\\"-_. =
e A o A, T SRR T i S AR T ;
SN\ SN\
: o

e A ';_-.:r.f.} s 3
s . _-_r;f:r s . Ay o, i

x Large number of parameters

x Needs a lot of training data

Examples: TRPO [Schulman 2015], DDPG [Silver 2015]

Other Representations:

* Linear Controllers wiiamset. al., 1992)

18

¢ R B F‘ N etWO r‘kS [Atkeson & Morimoto, NIPS 2002][Deisenroth & Rasmussen., ICML 2011]



Outline

Taxonomy of Policy Search Algorithms

Model-Free Policy Search Methods
* Policy Gradients
* Natural Gradients
e Exact Information Geometric Updates
* Success Matching

Policy Search for Multi-Agent Systems

19



Model-Free Policy Updates

Use samples | -
Doy = {6, R} or Dy = {5l af", @}

to directly update the policy

* Learn stochastic policies:

0, ~ m(6;w) a; ~ w(alsy; 0)
Parameter exploration Action exploration

* E.g. Gaussian policies:
6, ~ N(6]p, ) a; ~ N(alp(s), )

* Mean g : location of the maximum
* Covariance 2i: which directions to explore (simplification: ¥ = diag(o))

e Update mean and covariance!

20



Model-Free Policy Updates

21

Different optimization methods ... ... use different metrics to define step-size

* Policy Gradients < ° Euclidean distance

* Natural Policy Gradients &> ¢ Approximate KL

* Exact Information-Geometric Updates <:$:> * Exact Information-KL
 Success Matching <:£:> * Exact Moment-KL

Can be used for action-based and trajectory-based policy search



Policy Gradients

Gradient Ascent
 Compute gradient from samples

Do, = {61 BRI} or Dy ={sl!al’, Q"
8J9/8w = Vwa or 8.]9/89 = VQJQ

e Update policy parameters in the direction of the gradient

Wk+1 = Wk4+1 + onwak or 9kz+1 — 0, + OéVngk

e «... learningrate

22



Likelihood-Ratio Policy Gradients

Trajectory-Based: Policy 6 ~ 7(0;w)

We can use the log-ratio trick to compute the policy gradient
1
Viog f(x) = me(:c) —> Vf(x)= f(x)Vliog f(x)

Gradient of the expected return:

Veodow = Vw/W(G;w)RgdG = /VwW(B;w)RgdB

= / m(0;w)V,, logm(0;w)Redl

N
~ Z Ve log m(6;; w)R
i=1
* Policy gradients with parameter-based exploration (PGPE) [rickstiess 2008]

23



Likelihood-Ratio Policy Gradients

Problem: The likelihood-ratio gradient is a high variance estimator

e Subtract a minimum variance-baseline

e High variance in the returns — use rewards to come

24



Baselines...

We can always subtract a baseline b from the returns...

no baseline

N
Vodw =Y Velogm(0i;w)(R; — b)

1=1

Why?

 Subtracting a baseline can reduce the variance

baseline

e |[ts still unbiased...

Er(6:w) Ve logm(0; w)b] = b/VwW(B;w) = bV, /7‘&'(

3
E
|
o

Good baselines:
* Average reward
* but there are optimal baselines for each algorithm that minimize the

25 Va rl a n Ce [Peters & Schaal, 2006], [Deisenroth, Neumann & Peters, 2013]



Action-Based Policy Gradient Methods

Plug in the temporal structure of the RL problem

T
» Trajectory distribution: p(1;0) = p(s1) H m(at|st; 0)p(st+1]st, at)
t=1

T
e Return for a single trajectory: R(T) — Z Tt
t=1

m Expected long term reward Jg can be written as expectation over
the trajectory distribution

Jo = Eyima [R(T)] = / p(r:0)R(r)dr

20



Action-Based Likelihood Ratio Gradient

Using the log-ratio trick, we arrive at

VoJo = » Vglogp(r!";0)R

1=1

How do we compute Ve log p(71; 6) 7

log p(T;0) ZIOgﬂ' a;|s;; @) + const

* Model-dependent terms cancel due to the derivative

T
Vologp(T;0) = Z Vo logm(a:|s:;0)

7 =1



Action-Based Policy Gradients

Plug it backin... -
Vol =YY Velogn(a)'|s,;0)R(r!?)
i=1 t=1
This algorithm is called the REINFORCE wiizms 1952

28



Action-Based Policy Gradient Methods

The returns have a lot of variance

T
plil — Z"Z[f]
t=1
... as they are the sum over T random variables

There is less variance in the rewards to come:

h=t
* ... as we sum over less time steps

29



Using the rewards to come...

Simple Observation: Rewards in the past are not correlated with actions in the
future

E,ry rnVelogm(as|sy)] = 0,Vh < t

This observation leads to the Policy Gradient Theorem sutonisss)

T
Vo log 7r(a,7[f’] |s,[57’]; 0) (Z rg])
1 . . T .
~ Vologm(af|s;’; 0) (Z riﬂ)
t

T —

~

TN

VeClJ

i

I
.

|
. N-\/

Vologm(al’|s”; 0)Q;"

|
N
.

—t

i

t—=

30 * This algorithm is also called GPOMDP isaxter 20011



Using the rewards to come

Essentially, the policy gradient theorem is equivalent to the following objective:

Finite Horizon MDP:
T—1
JPG — Z /p?old (st)ﬂ(at\st; 9) ?Old (St, at)dstdat
t=1

Infinite Horizon MDP:

Jpg = /p“old(s)w(a|s;O)Qﬂold(s,a)dsda,

. P™(s) . state distribution of old policy
e Q™9 (s,a) ...Q-Function of old policy
Assumption:

* Policy does not change a lot
* |.e., we can neglect change in state distribution and Q-function

31



Baselines...

We can again use a baseline

N T-1
Ve€T =3 > Vologr(al'|s’;0)(Q}" — bu(s

1=1 t=1

* Baseline is now state dependent and time dependent

Good Baselines:
e Value function: b(s) = V, " (s)

* There is also a minimal variance baseline

32
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Outline

Taxonomy of Policy Search Algorithms

Model-Free Policy Search Methods
* Policy Gradients
* Natural Gradients
* Information Geometric Updates

* Success Matching

33



Metric in standard gradients

W41 = WE+1 T Odez]wk or 9k+1 — 0 + O{nggk

How can we choose the step size o ?

Too moderate Too greedy About right

Aggressiveness of the policy update:
» Exploration-Exploitation tradeoff
* Robustness: Stay close to validity region of your data

* immediate vs. long-term performance

34



Metric in policy gradients

Define a bound/trust region to specify aggressiveness:
M (7, 7o1a) < €

* ¢ defines the distance in the metric space

Which metric M can we use?

. . Trajectory-based Action-based
* E.g, euclidian distance
Lo(mt1, ) = [lwptr — wil|  Lo(mhyr, m) = [|Oy1 — Ok
R Iti t ' !
e Resulting step-size: A = €
|VJ]

* However: Euclidean distance does not capture the change in the distribution!

35



Information-geometric constraints

Better Metric from information geometry: Relative Entropy or Kullback-Leibler
divergence
p(x)

KL(p|lq) = Zp log B

. Informatlon—geometrlc distance” measure between distributions

e ,Most natural similarity measure for probability distributions®

Properties:
 Always larger 0:  KL(p||q) > 0
e Only O iff both distributions are equal: KL(p|lg) =0 < p=gq
» Not symetric, so not a real distance: KL(pl||q) # KL(q||p)

36



Kullback-Leibler Divergences

Moment projection:

* pislarge where ever g is large
* Match the moments of g with the moments of p

e Same as Maximum Likelihood estimate !

KL-Bound:

argminpKL(q| D)

KL(7mo1q||m) < €

* Limits the difference in the moments of both policies

37

Bishop, 2006



Kullback-Leibler Divergence

Information projection:  argmin, KL(p||q)
* pis zero wherever q is zero (zero forcing)
* not unique for most distributions
e Contains the entropy of p

KL-Bound: KL(moal|m) <€

 Limits the information gain of the policy update

38

Bishop, 2006




<

VN Q@

-

KL divergences and the Fisher information matrix; =

The Kullback Leibler divergence can be approximated by the Fisher information
matrix (2nd order Taylor approximation)

KL(mg+n0||Te) ~ AOT G(6)A6O
where G(8)is the Fisher information matrix (FIM)
G(0) =E, [Vglogn(xz;0)Vglogn(x;6)"]

= Captures information how the parameters influence the distribution

39



Natural Gradients

The natural gradient w1 Uses the Fisher information matrix as metric

Linearized objective: Find direction Aw maximally correlated with gradient

e Quadratized KL constraint
V5CJ = arg max A0V o]

s.t. AOTG(0)AO < e

Note: The 2nd order Taylor approximation is symetric:

KL(W9_|_A9H7T9) ~ AGTG(B)AB ~ KL(W9||7TQ_|_A9)

For approximate information-geometric trust regions, it does not matter which KL we take
40



Natural Gradients

The solution to this optimization problem is given as:

VoCJ =nG(0) 1VeJ

* |nverse of the FIM: every parameter has the same influence!

* |nvariant to linear transformations of the parameter space!

* We can optimize for 1 in closed form (Lagrangian multiplier)

e (Can be directly applied to the trajectory-based policy gradient:
 Natural Evolutionary Strategy (NES) (wiestra, sun, Peters & Schmidhuber 2008]

41



Natural Policy Gradients

Action-based policy gradient:

* We need to compute Fisher information matrix over trajectories

G(0) = E,(r0) [Valogp(1:0)Velogp(7;0)"]

 Trajectory distribution not known, hard to compute

* |t can be shown that we can compute the all action matrix instead eeters & schaal, 2003

T
F(B) — ZE})’T(S)W(&|S;9) [VG logﬂ-(a"s; O)VG logﬂ-(a"s; G)T} — G(B)
t=1
* Easier to compute

Result: Action-based natural gradient

VYCT =nF(0) 'VeJ
42



Computing the FIM

Two ways to compute the FIM
e (Closed form solution

 Compatible function approximation

43



Closed form FIM computation

Closed-form solution:

T
F(H) ~ Z 1/NZE77(0,]3;9) [Vg log 7r(a|3; H)VQ log 7T((L|S; Q)T’S — S[’i]}

t=1 7

vy

" e

F(6,sl)
e Average the state FIM F'(6, s) over the state samples

 For most policies, the inner term can be computed in closed form
e E.g.: Gaussian distributions

Algorithmes:

¢ TraJECtOry-baSEdZ Natu ral EVO|UtIOHa ry Strategy (NES) [Wiestra, Schaul, Peters & Schmidhuber, 2008]
* Action-based: Trust Region Policy Optimization (TRPQO) ischuiman et al, 2015]

44



reward

TRPO for Deep Reinforcement Learning

Trust Region Policy Optimization (TRPO):

 State of the art for optimizing deep neural networks
* Problem: FIM gets huge

Use conjugate gradient as approximation

* FIM never explicitely represented, only FIM times gradie
* No need to invert FIM

* Line search to find step-size on exact KL constraint
) Walker

Trust Region Policy Optimization

Works very well... but 1M samples per iteration
[Schulman, Levine, Moritz, Jordon & Abbeel, Trust Regoin Policy Optimization, ICML 2015]




What we have seen from the policy gradients

* Policy gradients dominated policy search for a long time and solidly working
methods exist.

* They need a lot of samples
e Approximate information-geometric constraints can be easily implemented
 Learning the exploration rate / variance is still difficult

53



Outline

Taxonomy of Policy Search Algorithms

Model-Free Policy Search Methods
* Policy Gradients
* Natural Gradients
* Exact Information Geometric Updates
* Success Matching

Policy Search Methods for Multi-Agent Systems

54



Exact Information Geometric Constraints

Exact information-theoretic policy update (trajectory-based):
1. Maximize return arg max / w(B)R(B)dO

2. Bound information gain (peters etal, 2011] st KL(WHWold) < €

Controls step-size for mean and covariance

Algorithm is called Relative Entropy Policy Search (REPS) rpeters etal, 20111

e — 0 € — 00
J. Peters et al., Relative Entropy Policy Search, Association for the Advancement of Artificial Intelligence (AAAI), 2011

55



Illustration: Distribution Update

Large initial exploration

Iteration O Iteration 4 Iteration 8 Iteration 12

S5
@ — return
o samples
x maximum

R AN N

w w w w

Small initial exploration

lteration O lteration 4 Iteration 8 lteration 12

s
”~

@ | —return
o samples
x maximum
w w w



Information-Theoretic Policy Update

Information-theoretic policy update: incorporate information from new samples

1. Maximize return argmax/w(Q)R(B)dB i
m . Reduces variance

2. Bound information gain [Peters 2011]  s.t. KL(7||mo1a) <€ 2 too quickly
- Exploration Parameters

|

A

3. Bound entropy loss [Abdolmaleki 2015] H(mo1q) — H()

Y o

v

loss in entropy

Entropy:

H(p) = — f p(w) log p(w)dw

« Measure for uncertainty

e—>o00 V77X e—vo00 v—0
J. Peters et al., Relative Entropy Policy Search, Association for the Advancement of Artificial Intelligence (AAAl), 2011
A. Abdolmaleki, ..., G. Neumann, Model-Based Relative Entropy Stochastic Search, NIPS 2015



Illustration: Distribution Update

No entropy loss bound

lteration O lteration 4 Iteration 8 lteration 12

s [vs
”~ Cad

@ | —return
o samples
x maximum
w

N A [

W w

With bounded entropy loss

Iteration O Iteration 4 lteration 8 lteration 12

J\ i

© | —return
o samples
x maximum
w w



Solution for Search Distribution

7
Solution for unconstrained distribution: T(w) o< Tod(w) 7= exp (

° 7] ...Lagrangian multiplier for: KL(WHﬂ'Old) <e€
e—0 = 7—=00 E T — Tod

€= X0 n—0 = ™ — greedy

e 0 e 00
e (W ... Lagrangian multiplier for: H(molq) — H(m) <7

fy_>0 |:> w >SS () |:> T — more uniform

Gaussianity needs to be ,enforced” |

* Fitnhew pO|ICV on samples (REPS, ipaniel2012, kupcsik2014, Neumann2014])

* Fitreturn function on samples (MORE, iscoimalekiz01s))

A. Abdolmaleki, ..., J. Peters, G. Neumann, Model-Based Relative Entropy Stochastic Search, NIPS 2015



Fit Return Function

Use compatible function approximation: 1
 Gaussian distribution:  AN[@|m, A] x exp (—§9TA9 + 6'm + const )

\ J \ | \ J

|
e Gaussian in cannonical form (log linear) E
e Precision A and linear part m :
* Compatible basis: quadratic lin

Valognm(0;:w) =00", V,,logm(0;w) =20

——————CD —_— e o - o g
Q
—
O
O
——————3 -—e e - - —
w
—t

1
1
1
1
1
A

Match functional form: RO) = 0746 + aT0 +  a

5

Q

=

2

* Quadraticin @, butlinearin parameters: 4y — {A,a,ap}

e . Obtained by linear regression on current set of samples

A. Abdolmaleki, ..., G. Neumann, Model-Based Relative Entropy Stochastic Search, NIPS 2015



Fit Return Function

Model-Based Relative Entropy Stochastic Search (MORE) : (abdoimaleki 2015]

1. Evaluation: Fit local surrogate R(Q) ~ 0740 + a’0 + g
. R(6 _ . g
2. Update: m(0) x meq(@) 7 exp (L) = 7(0) —N(B\y, DY )
\ ) \ n —I_ (,d’ \ ' J
pri'or Iikelir'wood

—

Linear Term: m™ = nmygq + a

- NAola — 2A —  Obtain mean and covariance

Precision: A"
n+ w _

= Interpolates in the natural parameter space (log linear parameters)

A. Abdolmaleki, ..., G. Neumann, Model-Based Relative Entropy Stochastic Search, NIPS 2015




Skill Improvement: Table Tennis

Setup:
* Single ball configuration
17 movement primitive parameters (DMPs)

P S P s s s
16

=

314

¥

512

S

10 |- o BE

=

T8 ——MOR

~ ——REPS

°r - xNES
4 ~ |—CMAES

0O 5 10 15 20 25 30 35 40
Episodes x 12



Adaptation of Skills

Goal: Adapt parameters @ to different situations

e Different ball trajectories
* Different target locations

Introduce context vector ¢ "'

e Continuous valued vector

\ \
e (Characterizes environment \ \
and objectives of agent \/

* |Individual context per task execution

c ~ p(c)

Use contextual search distribution:

m(0)c) = N (0| M ¢(c), )

Abdolmaleki, ..., Neumann, Model-Based Relative Entropy Stochastic Search, NIPS 2015
Kupcsik, ..., Neumann, Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills, Artificial Intelligence, 2015
Kupcsik, ..., Neumann, Data-Efficient Generalization of Robot Skills with Contextual Policy Search, AAAl 2013



Adaptation of Skills

Contextual distribution update:

1. Maximize expected return arg max £, ) /71‘(9|C)R(C, 9)d9]
2. Bound expected information loss st By :KL(W(-\C)|\7T01C1('|C))} < ¢
3. Bound entropy loss \H(ﬂ'old) — H(W)J <7

~
loss in entropy

ConteXtuaI MORE: [Tangaratt 2017]

—~

1. Evaluation: Fit local surrogate  R(e¢, 0)

X

01 A0 + 6" Bo(c) + aT0 + ag

_n R ;9 * *
2. Update: m(flc) o moa(f]c) 7t eXp( n(iw)) = 7(0]c) = N (6|M"$(c), x")
pri'or Iikelihood |

A. Abdolmaleki, ..., G. Neumann, Model-Based Relative Entropy Stochastic Search, NIPS 2015



Adaptation of Skills: Table Tennis

Contextual Policy Search:

e Context: Initial ball velocity (in 3 dimensions)

* Successfully return 100% of the balls

Average Return
© o o =
e » 0] - no

O
no

Y

1Y context 2 [3usl

\
=

axfual MORE
—— Contextual REPS

20

40 60 80 100 120
Episodes



Action-based KL-constraints: Reactive Skills

Goal: React to unforeseen events

* Adaptation during execution
of the movement

 Add perceptual variables
to state representation

 E.g.: ball position + velocity

erturbatlon

Use action-based stochastic policy:

 Time dependent linear feedback controllers

mi(als) = N(a|Kis + ki, 3t)



Policy Evaluation

Compatible Value Function Approximation:
* V-Function (baseline):
Quality of state s when following policy

T

Zrh(sh;ah)

h=t

Vf(s) =K, S; = 3] ~ STVtS + ST’Ut + Vo,

* Q-Function (compatible approximation):
Quality of state s when taking action g and following policy  afterwards

T

Q7 (s,a) =E; [Z rh(Sh, up)

St = S,a; = a] ~ aTQta—l—aTBts—l—ath-l-(Jo,t-l-ft(3)
h=t

 (Quadraticin actions, linear in state

e Baseline and Q-function are time dependent

e Estimated by LSTD



Policy Improvement

Policy Improvement per Time-Step:

1. Maximize Q-Function arg maXEPt(S) [/ m(a|s)QT (s, a)da

Tt
2. Bound expected information loss s.t. E,,(s) [KL(ﬂ't("SN‘Wt,old(’|3))} < ¢
3. Bound entropy loss H(7t01a) — H(me) <y

Model-free Trajectory Optimization (MOTO): (akrour 2016]

1. Evaluation: Fit local Q-Function Q™ (s, a) ~a’Q,a+a’B;s+alq, + ot + fi(s)

VTold

2. Update: m(als) WOld,t(a’|S)n+Lw exp( L (s,a))
N+ w

= m(als) =N (a|K|s+ k], X))

R. Akrour, ..., G. Neumann, Model-Free Trajectory Optirmnization for Reinforcement Learning of Motor Skills, ICML 2016



Reactive Skills: Table Tennis

Reactive Skills:
* Returns ball 100% of the times
* Not possible with desired trajectories

20

=
un

Average Return
S
‘.\
I
i
A

[+ i/’
! ral _ on
s| 1 i REPS+DMP
J - - -MORE+DMP
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Wrap-up for exact information constraints

Exact information-geometric constraints:

* Efficient computation of the full-covariance matrix

* Can be used in trajectory-based and action-based formulation

* We can use entropy-loss regularization to prevent premature convergence

There is a tight connection between natural gradients and REPS
* |f we use the natural parametrization (log-linear), REPS and natural gradients are equivalent

* |.e., onlyin this case the natural gradient solution is exact
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Outline

Taxonomy of Policy Search Algorithms

Model-Free Policy Search Methods
* Policy Gradients
* Natural Gradients
e Exact Information Geometric Updates
* Success Matching

Policy Search Methods for Multi-Agent Systems
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Success Matching Principle

Optimizing the average return is difficult:
* Non-linear, non-convex optimization problem
* Can we optimize a simpler, convex function instead?



Success Matching Principle

(" )

“When learning from a set of their own trials in iterated decision problems,
humans attempt to match not the best taken action but the reward-weighted

frequency of their actions and outcomes” [Arrow, 1958].
- Y,

Success-Matching: reweighting by success probability p(R = 1\7')
pe (7)o p(RIT)p™ ()

* Binary reward event R=1

Policy Told(a|s) 1 New Policy Tnew(@|S)

=

i + 4

Actions
i

.
.
.
.
.
o*
.

R
. .
"""
. b *
S
.

o
.
“““
‘‘‘‘ -
. .*

ReW a.rd JREACAE H StateS
' States >

.
E3R Y s
oe® L

3 + Succes (high reward) - Failure (low reward)



Success Matching Principle

Success-Matching: policy reweighting by success probability p(R = 1|7)
p™v(7) o< p(R|7T)p™ (7)

Most common success distribution

e Exponential reweighting:

p(R = 1|7T) o< exp(nR(T))

Can be derived in many ways:
o EXpeCtatlon maXimization [Kober & Peters., 2008][Vlassis & Toussaint., 2009][Neumann, 2011]
o Optlma| ContrC)l [Theodorou, Buchli & Schaal, 2010]

d | nfO m at|on Geometry [Peters et al, 2010, Daniel, Neumann & Peters, 2012]
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Success Matching via Expectation Maximization

We want to maximize the average success probability
p(R:6) = [ p(Rir)p(rs8)dr

* This is a latent variable model.
* Trajectories that have high success are unknown

[4S



Success Matching via Expectation Maximization

Using the EM-decomposition einer200s, it is €asy to show that
log p(R; 0) = L(q(7),0) + KL (¢(7)|[p(7|R, 6))

* For any variational distribution ¢(T)

Lower Bound: L(q(T),80) = /q(T) log p(R!;'()ﬁgT;B)
Posterior: p(T‘R, 9) _ p(sz-R].)(g"; 9)
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Success matching via Expectation Maximization

E-step: argmin, KL (¢(7)||p(T|R,0))
* Solution: ¢(7) = p(T|R, 0)
* Lower Bound is tight after the E-step
log p(R;0) = L(q(7),0) + KL (¢(7)||p(7|R, 0))

=0

(R|T)p(T30)

q(7) o

M-step: 0., = argmaxy L(q(7),0) = argmaxg /Q(T) log !

= argmaxe/p(R]T)p(T;Bold)logp(T;G)dT

A argmaxg Z p(R|T log p(r; 6)

Tl ~op(T50014)

* Thisis a weighted maximum log likelihood objective

rf



Weighted ML objective

Lower bound is easier to optimize than the expected reward

pold gnew [Bishop 2006]

* Closed form solution exist for many distributions
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Weighted Maximum Likelihood Solutions...

For a Gaussian policy (trajectory based): «(0;w) = N (0|u, X)

Weighted mean: Weighted covariance:
>, wlor! o 2w (0 — ) (0 — )"
a >, wlil B D i wli]

» with wll = p(R|71)
* But more general: Also for mixture models, GPs and so on...
* Matches moments of p(@|R) and 7 (0;w)
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Comparison to policy gradients

Weighted Maximum Likelihood Objective:

JvL(0) = /p(7'|901d)p(R|T) logp(T;0)dT
* Derivative (Weighted ML Solution):
Vedwmr, = /p(TQOld)p(R\T)Vg log p(T;0)dT
~1/N Y Vglogp(r;0")p(R|r) =0
Average return objectivé:

J() = / p(710) R(r)dr

Ved = /p(T|9)V9 logp(T;0)R(T)dT

30 ~1/N Z Ve logp(7; 8" R(7!")



Metric in Success Matching

Maximum Likelihood is inherently greedy
* How can we control the aggressiveness?
* What about overfitting?

* In particular for the covariance matrix estimate

Limit change in moments:

argmapop(R]T[i])logp(T[i];G)dT, s.t. KL(pe,.. (T)||pe(T)) <€

'
N / Limit change in moments

weighted ML = Moment Matching

e Reversed KL in comparison to REPS
* New distribution on the right
* Weighted maximum likelihood corresponds to moment projection
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CMA-ES

The Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES) tensen2003 is One of
the most successful stochastic optimizers

* Developed from well established heuristics
* Theoretical background for most CMA-ES update rules is missing

Gaussian Search Distribution: 7(0;w) = N(0; p,03)
* Update rules for:

* Mean p
° Covariance 3 = |nconsistent update rules that are not fully understood

—

* Stepsize o
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Deriving and improving CMA-ES

CMA-ES can be derived and improved using moment-KL bounds iasdoimateki 2017
* Algorithm called Trust Region CMA-ES

Trajectory/Parameter-based formulation:

Zp R0 log (07 w),  st. KL(7me,,(0)]|7w(0)) < ¢

. Opt|m|ze for each parameter (mean, covariance, stepsize) independently

e Can retrieve similar structure then CMA-ES updates

Nubold + ;i wlilgl

* Mean: ew —
Hn My T Zz w!]
. Eo + . [Z]S Zz w['o](g[%] T ”’o )(GM T u‘o )T
 Covarariance: Xiew = % Zold Z{U{ S = ld[i] -
s+ 22, wh 2V

A >

'
weighted sample covariance

Update interpolates moments of weighted sample distribution and old distribution!

83 A. Abdolmaleki, B. Price, N. Lau, P. Reis, G. Neumann, Deriving and Improving CMA-ES with information-geometric trust regions, Gecco 2017



Comparison to original CMA-ES

Difference to CMA-ES:
* CMA-ES does not use bound but KL-regularizer

 CMA-ES only uses KL regularizer for covariance
* Mean is just weighted ML, stepsize is based on heuristics

Evaluation on optimization functions

. 210* _ Sphere g 110" Diffpow _ - Elli _ a2t ParabR
45| === TR-CMA-ES || === TR-CMA-ES = | =@ = TR-CMA-ES 4 | —"®= TR-CMA-ES ___.-'"_'
v |~ CMA-ES |18 cmaEs N R =l ] B comaEs | 7 4
= asf .l 1
o 3t - al /A al :
‘S as| ot ¥
-E 25‘ ] -~ el ¢ at
— sl B i 4 &
I.II.J:IE -:|'I. - o i} o , 17} ] =} o i
"'5 0a T - :.'_r-.':-f - . T :':-_._:-.‘# = = = = = o W@ @0 4 &
E ot Rosenbrock ., Schwefel o Cigar o Tablet
5 e— T - . r = r

= g =-@== TR-CMA-ES 1. i TH-CMA-ES == TR-CMA-ES | —@— TR-CMA-ES
3 | cMAES A, L~ cMa-ES ?| == CMA-ES A .| =l CMA-ES

] LA
gﬁ 1] -'-l-l- 1l &} 1% =4 3
c ra 10=] :
g ) "I - )

84 i 5 ] o=k _'_-_.'_,_- ’ _..;" DS
S e w T e

Dimension



Comparison to original CMA-ES

Difference to CMA-ES:

* Bound is essential for non-continuous performance function

Evaluation on table tennis:

20

I _ N |

—
21

—
o

Average Fitness

——TR-CMA-ES
-=- CMA-ES

0 500 1000 1500 2000 2500 3000 3500 4000
Number of Evaluations
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Wrap-up: Two different objectives

Average Reward:
e Exact information-gain bound works well

e Can use compatible function approximation

Weighted Log-Likelihood:

* Convex surrogate for average reward

e Exact moment-bound works well

Relations (and combinations) of both still need to be understood

* In the approximate case, both bound formulations are equivalent
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Outlook & further reading

Survey papers:

» [Deisenroth, Neumann & Peters: A survey on policy search for robotics, FNT, 2013]
» [Kober, Bagnell & Peters: Reinforcement Learning for Robotics: A survey, 1JJR 2013]

Sample-efficient learning from high-dimensional sensory data
e Tactile and vision data [van Hoof 2015][Levine et al. 2016]
e Transfer from simulation to real robots (russo et al. 2016, Levine et al. 20162]

* Deep kernel-based methods (wiison et al. 2016]

Hierarchical Policy Search
* |dentify set of re-useable skills [paniel et al 2016, Bacon et al 2016]
* Learn to select, adapt, sequence and combine these skills paniei 20166, neumann 2014
* Deep hierarchical policy search isacon etal 2016]

Incorporate human feedback
* Inverse RL and Preference Learning (rinn 2016]iakrour et al. 2013)(wirth et al. 2016,

* Adverserial imitation learning (ermon 2016
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Outline

Taxonomy of Policy Search Algorithms

Model-Free Policy Search Methods
* Policy Gradients
* Natural Gradients
e Exact Information Geometric Updates
* Success Matching

Policy Search Methods for Multi-Agent Systems
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Reinforcement Learning for Multi-Agent Systems

How can we scale such approaches to multiple agents?

[Agent 1 } ]

a;
St
»
>
Tt
[ Agent n } g
t
—54 P ;
D Environment
o St4+1

89 | Gerhard Neumann | Cyberphysical Systems Summer School 2017 | Lucca



Decentralized-POMDPs

4 )
Agent 1
A Dec-POMDP is defined by:
| state Observation Polic L action
e its state space s € S Model Y
bservati
* An action space A for agent S e %
- - 4 Agent 2 A
* An observation space O; for agent J gen
e its transition dynamics p(s’|s, a) .
state _‘[ Obs,{:;\éa;;on Policy ]7_> ction
* observation model per agent p;(0|s) ] [
\ observation /

« A shared reward function for all agents 7(s, a)

e and its initial state probabilities fio()
There is a common goal (reward): collaborative agents

We do not know what the other agents observed
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Partially Observable Stochastic Games (POSG)

/

Agent 1
A POSG is defined by:

state Observation Poli | action
* its state space s € S Model oley

observation

* An action space A for agent

AN

Agent 2

* An observation space O; for agent

/
. . | ,
its transition dynamics p(s’|s,a) . _{ S— -
* observation model per agent p;(0|s) S Model I I

observation

— action

[

* An individual reward function for all agents r;(s, a)

e and its initial state probabilities fio()

Competitive agents -> That’s the hardest case!
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Collaborative vs. Competitive Learning

Collaborative Agents:
* Increased dimensionality

e Each agent is only controlling a subset of
the total action space

* Actions of other agents are perceived as
noise in the transitions

 Typically heterogenous: Agents share the
same policy

 Common goal: Each agent will find similar
policy updates

» Stable learning can be achieved

Competitive Agents:

agents react

concepts from game
uilibrium) to get a

* We can use s
theory (e.g. N
stable soluti

e Computati demanding
e Inherentl andard
reinforc used

92 | Gerhard Neumann | Cyberphysical Systems Summer School 2017 | Lucca



Partial observability

How do we deal with local observations?
* For optimal decisions, just the current observation is not enough

Two alternative state representations:

= Belief state:
Probability distribution over states, given past observations

v' Compact representation of the agent’s knowledge (sufficient statistics)

x Complex to compute, needs a model

= |nformation state:
Information state incorporates whole history

v Simple
x Very high dimensional I:> v Deep Neural Networks
Approximation: Cut history at certain length

93 | Gerhard Neumann | Cyberphysical Systems Summer School 2017 | Lucca



Policy Search for Robot Swarms

Many agents with only local observations
 Ability to accomplish sophisticated tasks (inspired by natural swarms)

* Local observations
* Decentralized decision making
e Learning in swarm systems is very difficult

Robot Platform:

94
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Deep RL Algorithms

Adaptations for Multi-Agent Learning with Homogeneous Agents
* Policies are shared across agents
* The policy gets the local observation-history as inputs
* Trust Region Policy Optimization (TRPO):
e Use transitions from all agents to estimate gradient

* Scales well to Deep Neural Networks



Tasks

e Simulations use Box2D for physically correct collision and movement

* Hand-coded communication model includes histograms of distance and bearing
to neighbouring agents

Three different tasks:

* Push: Agents need to learn how to push an intruder away from a simulated light source,
added information about intruder

* Edge: Agents shall find a constellation to stay within a certain range to each other while
avoiding collisions

* Chain: Agents shall bridge two points (e.g. a food source and a nest) and keep up the
connections, added information about shortest paths



Results: Push Task

* Red agent uses hand-coded phototaxis
behaviour to reach center of the world

* Green agents execute learned policy
to push red agent as far as possible
away from center

Observations:

* 3 bump sensors for short range collision
avoidance

e distance to red agent if in range

* Histogram over distances of green agents
In range
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Results: Edge Task

* Agents receive positive reward for
1.0

each edge they form l "Vﬁ!@“‘&?’ r)
* an edge forms if two agents are within - ‘! ‘\3\’%@&@,’ =N
the bright green bands . \a‘@” Y0 LX2
‘N a ‘_33& "' A\

- Ny

* negative reward for being too close to
each other

0.6

Observations: -

* 3 bump sensors

2D histogram over distance/bearing to 0.2
other agents in range

0.0 0.2 0.4 0.6 0.8 1.0



Results: Chain Task

* Agents start at a source and try to find
and maintain a link to a sink of some
sort

Observations include:
* 3 bump sensors

e Two 2D histograms over distance/bearing
to other agents within range

* 1. Agents seeing source

e 2:agents seeing sink

0.4

0.6

0.8

1.0



Conclusion

Policy Search Methods have made a tremendous development |

Trajectory-based:
» Data efficient learning of rather simple policies
* No feedback

» Robot-friendly” exploration

Action-based:
* can learn deep policies
* not sample efficient
* Uncorrelated exploration

Finding the right metric is the key to efficient and robust exploration!
* Approximate KL bounds: symmetric, but loose information
* Information KL bounds: Suitable for average return formulation

100  Moment KL bounds: Suiteable for maximum likelihood formulation



Conclusion

Policy Search Methods for Multi-Agent Systems
* Learn complex policies using observation histories

* Deep RL algorithms scale well to the multi-agent case
* They do need millions of examples

Open Problems:

* Learning Communication
* Internal memory
 Specialization of Agents
* Physical Interaction

* Learning with real robots
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