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Motivation

In the next few years, we will see a dramatic increase of (multi-)robot applications
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Industrial Robots

Today:

Nano-RobotsRobot Assistants Dangerous Env.

Tomorrow:

http://news.softpedia.com/

Household AgricultureHousehold Transportation

http://www.Wikipedia.de http://zackkanter.com/

Programming such tasks seems to be infeasable. 

Can a robot learn such tasks by trial and error?



Reinforcement Learning (RL)

Agent

Environment

Markov Decision Processes (MDPs):



Reinforcement Learning (RL)

transition dynamics

reward function

Stochastic Policy

• implicit exploration

Deterministic Policy

• explicit exploration needed in addition

Learning: Adapting the policy /          of the agent

Markov Decision Processes (MDPs):



Reinforcement Learning

Objective: Find policy that maximizes long term reward

Infinite Horizon MDP:

• Discount factor

Tasks:
• Stabilizing movements:

Balancing, Pendulum Swing-up… 
• Rhythmic movements:

Locomotion [Levine & Koltun., ICML 2014], Ball 
Padding [Kober et al, 2011], 

Finite Horizon MDP:

Tasks:
• Stroke-based movements:

Table-tennis [Mülling et al., IJRR 2013], Ball-
in-a-Cup [Kober & Peters., NIPS 2008], Pan-
Flipping [Kormushev et al., IROS 2010], Object 
Manipulation [Krömer et al, ICRA 2015]

Deisenroth et. al.Stanford

Kormushev et. al.Peters et. al.

Peters et. al.



Reinforcement Learning

Important Functions:

• V-Function: Quality of state s when following policy

• Q-Function: Quality of state s when taking action a and following policy afterwards

Infinite Horizon MDP: Finite Horizon MDP:

Infinite Horizon MDP: Finite Horizon MDP:



Robot Reinforcement Learning

Challenges:

Dimensionality: 

• High-dimensional continuous
state and action space

• Huge variety of tasks

Real world environments:

• High-costs of generating data

• Noisy measurements

Exploration: 

• Do not damage the robot

• Need to generate smooth 
trajectories

8



Robot Reinforcement Learning
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Value-based Reinforcement Learning:

Estimate value function: 

• Global estimate for all reachable states

• Hard to scale to high-D

• Approximations might „destroy“ policy

Estimate global policy:

• Greedy policy update for all states

• Policy update might get unstable

Explore the whole state space: 

• Uncorrelated exploration in each step

• Might damage the robot

Challenges:

Dimensionality

Real world environments

Exploration



Correlated local exploration

• Explore in parameter space

• Generates smooth trajectories

Robot Reinforcement Learning
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Policy Search Methods [Deisenroth, Neumann &Peters, A Survey of Policy Search for Robotics, FNT 2013]

Use parametrized policy

• Compact parametrizations for
high-D exists

• Encode prior knowledge

Locally optimal solutions

• Safe policy updates

• No global value function estimation

Challenges:

Dimensionality

Real world environments

Exploration

Value-based Reinforcement Learning:

Estimate value function

Estimate global policy

Explore the whole state space



Policy Search Classification

Yet, it’s a grey zone…

Important Extensions:

• Contextual Policy Search [Kupscik, Deisenroth, Peters & Neumann, AAAI 2013], [Silva, Konidaris & Barto, ICML 2012], [Kober & Peters, IJCAI 2011], [Paresi & 

Peters et al., IROS 2015] 

• Hierarchical Policy Search [Daniel, Neumann & Peters., AISTATS 2012], [Wingate et al., IJCAI 2011], [Ghavamzadeh & Mahedevan, ICML 2003]
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Direct Policy
Search

Value-Based
RL

Evolutionary
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Policy 
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DQN, Q-Learning,
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Outline

Taxonomy of Policy Search Algorithms

Model-Free Policy Search Methods

• Policy Gradients

• Natural Gradients

• Exact Information Geometric Updates

• Success Matching

Policy Search for Multi-Agent Systems
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Policy Search Pseudo Algorithm

Three basic steps:

Explore: Generate trajectories following the policy

Evaluate: Assess quality of trajectory or actions

Update: Compute new policy
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Trajectory-based:

Use trajectories and parameters
interchangeably

Explore: in parameter space at the 
beginning of an episode

• Search distribution

• parameters of search distribution

• deterministic policy

Evaluate: quality of trajectories            
by the returns  

Taxonomy of Policy Search Algorithms

14

Action-based:

Explore: in action-space at each time 
step

• stochastic control policy

Evaluate: quality of state-action pairs                   
by reward to come



Trajectory-based

Properties: 

• Simple, no Markov assumption

• Correlated exploration, smooth trajectories

• Efficient for small parameter spaces (< 100)

• E.g. movement primitives

Structure-less optimization

„Black-Box Optimizer“

Taxonomy of Policy Search Algorithms
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Action-based 

Properties:

• Less variance in quality assessment.

• More data-efficient (in theory)

• Jerky trajectories due to exploration

• Can produce unreproducible trajectories for 
exploration-free policy

Use structure of the RL problem

decomposition in single timesteps



Trajectory-based

Algorithms:

• Evolutionary Strategies

• PE-PG [Rückstiess, Sehnke, et al.2008]

• MORE [Abdolmaleki, et al.2015]

• Episodic REPS [Daniel, Neumann & Peters, 2012]

• PI2-CMA [Stulp & Sigaud, 2012]

• CMA-ES [Hansen et al., 2003]

• Natural Evolution Strategy [Wiestra,  Schaul , Peters & 

Schmidhuber, 2008]

• Cross-Entropy Search [Mannor et al. 2004]

Taxonomy of Policy Search Algorithms
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Action-based

Algorithms:

• Natural Actor Critic [Peters & Schaal 2003]

• Trust Region Policy Optimization
[Schulman et al., 2015]

• MOTO [Akrour et al., 2016]

• Policy Gradient Theorem / GPOMDP 
[Baxter & Bartlett , 2001]

• 2nd Order Policy Gradients [Furmston & Barber 2011]

• Deterministic Policy Gradients [Silver, Lever et al,  

2014]



Trajectory-based policy representations

Parametrized Trajectory Generators

• Returns a desired trajectory

• Compute controls       by the use of 
trajectory tracking controllers 

✓ Low number of parameters

✓ Sample efficient to learn

× No sensory feedback

Examples:

• Splines, Bezier Curves [Miyamoto et al., Neural Networks 1996],[Kohl & Stone., ICRA 2004], …

• Movement Primitives [Peters & Schaal, IROS 2006], [Kober & Peters., NIPS 2008], [Kormushev et al., IROS 2010], [Kober & Peters, IJCAI 2011] 

[Theodorou, Buchli & Schaal., JMLR 2010]
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Action-based policy representations

Deep Neural Networks:

• Directly computes control output

✓ Less feature engineering

✓ Incorporate high-dimensional 
feedback (vision, tactile)

× Large number of parameters

× Needs a lot of training data

Examples: TRPO [Schulman 2015], DDPG [Silver 2015]

Other Representations:

• Linear Controllers [Williams et. al., 1992]

• RBF-Networks [Atkeson & Morimoto, NIPS 2002][Deisenroth & Rasmussen., ICML 2011]18



Outline

Taxonomy of Policy Search Algorithms

Model-Free Policy Search Methods

• Policy Gradients

• Natural Gradients

• Exact Information Geometric Updates

• Success Matching

Policy Search for Multi-Agent Systems
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Model-Free Policy Updates

Use samples 

to directly update the policy

• Learn stochastic policies:

• E.g. Gaussian policies:

• Mean     : location of the maximum

• Covariance     : which directions to explore  (simplification:                         ) 

• Update mean and covariance!
20

Parameter exploration Action exploration



Model-Free Policy Updates

Different optimization methods  …       

• Policy Gradients

• Natural Policy Gradients

• Exact Information-Geometric Updates

• Success Matching

Can be used for action-based and trajectory-based policy search

21

… use different metrics to define step-size

• Euclidean distance

• Approximate KL

• Exact Information-KL

• Exact Moment-KL



Policy Gradients

Gradient Ascent

• Compute gradient from samples

• Update policy parameters in the direction of the gradient

• learning rate

22
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Likelihood-Ratio Policy Gradients

Trajectory-Based: Policy 

We can use the  log-ratio trick to compute the policy gradient

Gradient of the expected return:

• Policy gradients with parameter-based exploration (PGPE) [Rückstiess 2008]



Likelihood-Ratio Policy Gradients

Problem: The likelihood-ratio gradient is a high variance estimator

• Subtract a minimum variance-baseline

• High variance in the returns – use rewards to come

24
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We can always subtract a baseline b from the returns…

Why? 

• Subtracting a baseline can reduce the variance

• Its still unbiased…

Good baselines: 

• Average reward

• but there are optimal baselines for each algorithm that minimize the
variance [Peters & Schaal, 2006], [Deisenroth, Neumann & Peters, 2013]

Baselines…
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Action-Based Policy Gradient Methods

Plug in the temporal structure of the RL problem

• Trajectory distribution:

• Return for a single trajectory:   

Expected long term reward can be written as expectation over
the trajectory distribution

26
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Action-Based Likelihood Ratio Gradient

Using the log-ratio trick, we arrive at

How do we compute ?

• Model-dependent terms cancel due to the derivative
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Action-Based Policy Gradients

Plug it back in… 

This algorithm is called the REINFORCE [Williams 1992]



Action-Based Policy Gradient Methods

The returns have a lot of variance

… as they are the sum over T random variables

There is less variance in the rewards to come:

• … as we sum over less time steps

29
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Using the rewards to come…

Simple Observation:  Rewards in the past are not correlated with actions in the
future

This observation leads to the Policy Gradient Theorem [Sutton 1999]

• This algorithm is also called GPOMDP [Baxter 2001]



Using the rewards to come

Essentially, the policy gradient theorem is equivalent to the following objective:

• … state distribution of old policy

• …. Q-Function of old policy

Assumption:

• Policy does not change a lot

• I.e., we can neglect change in state distribution and Q-function

31

Infinite Horizon MDP:

Finite Horizon MDP:
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Baselines…

We can again use a baseline

• Baseline is now state dependent and time dependent

Good Baselines:

• Value function:

• There is also a minimal variance baseline



Outline

Taxonomy of Policy Search Algorithms

Model-Free Policy Search Methods

• Policy Gradients

• Natural Gradients

• Information Geometric Updates

• Success Matching
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Metric in standard gradients

How can we choose the step size ?

Aggressiveness of the policy update:

• Exploration-Exploitation tradeoff

• Robustness: Stay close to validity region of your data

• immediate vs. long-term performance

Too moderate Too greedy About right
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Metric in policy gradients

Define a bound/trust region to specify aggressiveness:

• defines the distance in the metric space

Which metric M can we use?

• E.g, euclidian distance

• Resulting step-size:

• However: Euclidean distance does not capture the change in the distribution!

Trajectory-based Action-based
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Information-geometric constraints

Better Metric from information geometry: Relative Entropy  or Kullback-Leibler
divergence

• Information-geometric „distance“ measure between distributions

• „Most natural similarity measure for probability distributions“

Properties:

• Always larger 0:

• Only 0 iff both distributions are equal:

• Not symetric, so not a real distance:
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Kullback-Leibler Divergences

Moment projection: 

• p is large where ever q is large

• Match the moments of q with the moments of p

• Same as Maximum Likelihood estimate !

KL-Bound:

• Limits the difference in the moments of both policies

Bishop, 2006
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Kullback-Leibler Divergence

Information projection: 

• p is zero wherever q is zero (zero forcing)

• not unique for most distributions

• Contains the entropy of p

KL-Bound:

• Limits the information gain of the policy update

Bishop, 2006
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The Kullback Leibler divergence can be approximated by the Fisher information
matrix (2nd order Taylor approximation)

where      is the Fisher information matrix (FIM)

Captures information how the parameters influence the distribution

KL divergences and the Fisher information matrix
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The natural gradient [Amari 1998] uses the Fisher information matrix as metric

• Linearized objective: Find direction maximally correlated with gradient

• Quadratized KL constraint

Note: The 2nd order Taylor approximation is symetric:

• For approximate information-geometric trust regions, it does not matter which KL we take

Natural Gradients
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The solution to this optimization problem is given as:

• Inverse of the FIM: every parameter has the same influence!

• Invariant to linear transformations of the parameter space!

• We can optimize for in closed form (Lagrangian multiplier)

• Can be directly applied to the trajectory-based policy gradient:

• Natural Evolutionary Strategy (NES) [Wiestra, Sun, Peters & Schmidhuber 2008] 

Natural Gradients
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Action-based policy gradient:

• We need to compute Fisher information matrix over trajectories

• Trajectory distribution not known, hard to compute

• It can be shown that we can compute the all action matrix instead [Peters & Schaal, 2003]

• Easier to compute

Result: Action-based natural gradient

Natural Policy Gradients
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Computing the FIM

Two ways to compute the FIM

• Closed form solution

• Compatible function approximation
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Closed form FIM computation

Closed-form solution:

• Average the state FIM               over the state samples

• For most policies, the inner term can be computed in closed form

• E.g.: Gaussian distributions

Algorithms:

• Trajectory-based: Natural Evolutionary Strategy (NES) [Wiestra, Schaul, Peters & Schmidhuber, 2008]

• Action-based: Trust Region Policy Optimization (TRPO) [Schulman et al, 2015]



TRPO for Deep Reinforcement Learning

Trust Region Policy Optimization (TRPO):

• State of the art for optimizing deep neural networks

• Problem: FIM gets huge

Use conjugate gradient as approximation

• FIM never explicitely represented, only FIM times gradie

• No need to invert FIM

• Line search to find step-size on exact KL constraint

45

[Schulman, Levine, Moritz, Jordon & Abbeel, Trust Regoin Policy Optimization, ICML 2015]

Works very well… but 1M samples per iteration
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What we have seen from the policy gradients

• Policy gradients dominated policy search for a long time and solidly working 
methods exist.

• They need a lot of samples

• Approximate information-geometric constraints can be easily implemented

• Learning the exploration rate / variance is still difficult



Outline

Taxonomy of Policy Search Algorithms

Model-Free Policy Search Methods

• Policy Gradients

• Natural Gradients

• Exact Information Geometric Updates
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Policy Search Methods for Multi-Agent Systems
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Exact Information Geometric Constraints

55

Exact information-theoretic policy update (trajectory-based):

1. Maximize return

2. Bound information gain [Peters et al, 2011]

Algorithm is called Relative Entropy Policy Search (REPS) [Peters et al., 2011]

Controls step-size for mean and covariance

J. Peters et al., Relative Entropy Policy Search, Association for the Advancement of Artificial Intelligence (AAAI), 2011



Illustration: Distribution Update

Large initial exploration

Small initial exploration



Information-Theoretic Policy Update

J. Peters et al., Relative Entropy Policy Search, Association for the Advancement of Artificial Intelligence (AAAI), 2011

A. Abdolmaleki, …, G. Neumann, Model-Based Relative Entropy Stochastic Search, NIPS 2015

Information-theoretic policy update: incorporate information from new samples

1. Maximize return 

2. Bound information gain [Peters 2011]

3. Bound entropy loss [Abdolmaleki 2015]
Exploration Parameters

Reduces variance 

too quickly

Entropy:

• Measure for uncertainty



Illustration: Distribution Update

No entropy loss bound

With bounded entropy loss



Solution for Search Distribution

Solution for unconstrained distribution:                                                                   

• … Lagrangian multiplier for:

• … Lagrangian multiplier for:

Gaussianity needs to be „enforced“ !

• Fit new policy on samples (REPS, [Daniel2012, Kupcsik2014, Neumann2014])

• Fit return function on samples (MORE, [Abdolmaleki2015])

A. Abdolmaleki, …, J. Peters, G. Neumann, Model-Based Relative Entropy Stochastic Search, NIPS 2015

greedy

more uniform



Fit Return Function

Use compatible function approximation:

• Gaussian distribution:

• Gaussian in cannonical form (log linear)

• Precision       and linear part

• Compatible basis:

Match functional form: 

• Quadratic in      , but linear in parameters: 

• obtained by linear regression on current set of samples

A. Abdolmaleki, …, G. Neumann, Model-Based Relative Entropy Stochastic Search, NIPS 2015

quadratic linear const



Fit Return Function

Model-Based Relative Entropy Stochastic Search (MORE) : [Abdolmaleki 2015]

1. Evaluation: Fit local surrogate

2. Update:

A. Abdolmaleki, …, G. Neumann, Model-Based Relative Entropy Stochastic Search, NIPS 2015

prior likelihood posterior

Linear Term:    

Precision:

Interpolates in the natural parameter space (log linear parameters)

Obtain mean and covariance



Skill Improvement: Table Tennis

Setup:

• Single ball configuration

• 17 movement primitive parameters (DMPs)



Adaptation of Skills

Goal: Adapt parameters      to different situations

• Different ball trajectories

• Different target locations

Introduce context vector     

• Continuous valued vector

• Characterizes environment
and objectives of agent

• Individual context per task execution

Use contextual search distribution:

Abdolmaleki, …, Neumann, Model-Based Relative Entropy Stochastic Search, NIPS 2015

Kupcsik, …, Neumann, Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills, Artificial Intelligence, 2015 
Kupcsik, …, Neumann, Data-Efficient Generalization of Robot Skills with Contextual Policy Search, AAAI 2013



Adaptation of Skills

Contextual distribution update:

1. Maximize expected return

2. Bound expected information loss

3. Bound entropy loss

Contextual MORE: [Tangaratt 2017]

1. Evaluation: Fit local surrogate

2. Update:

A. Abdolmaleki, …, G. Neumann, Model-Based Relative Entropy Stochastic Search, NIPS 2015

prior likelihood posterior



Adaptation of Skills: Table Tennis

Contextual Policy Search:

• Context: Initial ball velocity (in 3 dimensions)

• Successfully return 100% of the balls



Action-based KL-constraints: Reactive Skills

Goal: React to unforeseen events

• Adaptation during execution 
of the movement

• Add perceptual variables 
to state representation

• E.g.: ball position + velocity

Use action-based stochastic policy:

• Time dependent linear feedback controllers

Example: Perturbation at impact (spin)



Policy Evaluation

Compatible Value Function Approximation:

• V-Function (baseline): 

Quality of state s when following policy

• Q-Function (compatible approximation):

Quality of state s when taking action a and following policy afterwards

• Quadratic in actions, linear in state

• Baseline and Q-function are time dependent

• Estimated by LSTD



Policy Improvement

Policy Improvement per Time-Step:

1. Maximize Q-Function

2. Bound expected information loss

3. Bound entropy loss

R. Akrour, …, G. Neumann, Model-Free Trajectory Optimization for Reinforcement Learning of Motor Skills, ICML 2016

Model-free Trajectory Optimization (MOTO): [Akrour 2016]

1. Evaluation: Fit local Q-Function

2. Update:



Reactive Skills: Table Tennis

Reactive Skills:

• Returns ball 100% of the times

• Not possible with desired trajectories



Wrap-up for exact information constraints

Exact information-geometric constraints:

• Efficient computation of the full-covariance matrix

• Can be used in trajectory-based and action-based formulation

• We can use entropy-loss regularization to prevent premature convergence

There is a tight connection between natural gradients and REPS

• If we use the natural parametrization (log-linear), REPS and natural gradients are equivalent

• I.e., only in this case the natural gradient solution is exact

70
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Taxonomy of Policy Search Algorithms

Model-Free Policy Search Methods

• Policy Gradients

• Natural Gradients

• Exact Information Geometric Updates

• Success Matching

Policy Search Methods for Multi-Agent Systems
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Success Matching Principle

Optimizing the average return is difficult:

• Non-linear, non-convex optimization problem

• Can we optimize a simpler, convex function instead?
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Success Matching Principle

Success-Matching: reweighting by success probability 

• Binary reward event R = 1

“When learning from a set of their own trials in iterated decision problems, 
humans attempt to match not the best taken action but the reward-weighted 
frequency of their actions and outcomes” [Arrow, 1958].

States

+ Succes (high reward)   - Failure (low reward)

Policy

+ +
++
+

++

-- -

- -Reward

+ +
++
+

++

--
-

- - States

New Policy



Success Matching Principle

Success-Matching: policy reweighting by success probability 

Most common success distribution

• Exponential reweighting:

Can be derived in many ways:

• Expectation maximization [Kober & Peters., 2008][Vlassis & Toussaint., 2009][Neumann, 2011]

• Optimal Control [Theodorou, Buchli & Schaal, 2010]

• Information Geometry [Peters et al, 2010, Daniel, Neumann & Peters, 2012]

74



Success Matching via Expectation Maximization

We want to maximize the average success probability

• This is a latent variable model. 

• Trajectories that have high success are unknown

75



Success Matching via Expectation Maximization

Using the EM-decomposition [Bishop 2006], it is easy to show that

• For any variational distribution

Lower Bound:

Posterior: 

76



Success matching via Expectation Maximization

E-step:

• Solution: 

• Lower Bound is tight after the E-step

M-step:

• This is a weighted maximum log likelihood objective

77



Weighted ML objective

Lower bound is easier to optimize than the expected reward

• Closed form solution exist for many distributions

78

[Bishop 2006]



Weighted Maximum Likelihood Solutions…

For a Gaussian policy (trajectory based):       

• with

• But more general: Also for mixture models, GPs and so on…

• Matches moments of and

79

Weighted mean: Weighted covariance:



Comparison to policy gradients

Weighted Maximum Likelihood Objective:

• Derivative (Weighted ML Solution):

Average return objective: 

• Derivative (Policy Gradient):

80

Difference: reward transformation



Metric in Success Matching

Maximum Likelihood is inherently greedy

• How can we control the aggressiveness?

• What about overfitting?

• In particular for the covariance matrix estimate

Limit change in moments:

• Reversed KL in comparison to REPS

• New distribution on the right

• Weighted maximum likelihood corresponds to moment projection

81



CMA-ES

The Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES) [Hansen 2003] is one of
the most successful stochastic optimizers

• Developed from well established heuristics

• Theoretical background for most CMA-ES update rules is missing

Gaussian Search Distribution:

• Update rules for:

• Mean

• Covariance

• Stepsize

82

Inconsistent update rules that are not fully understood



Deriving and improving CMA-ES

CMA-ES can be derived and improved using moment-KL bounds [Abdolmaleki 2017]

• Algorithm called Trust Region CMA-ES

Trajectory/Parameter-based formulation:

• Optimize for each parameter (mean, covariance, stepsize) independently

• Can retrieve similar structure then CMA-ES updates

• Mean:

• Covarariance: 

Update interpolates moments of weighted sample distribution and old distribution!
83 A. Abdolmaleki, B. Price, N. Lau, P. Reis, G. Neumann, Deriving and Improving CMA-ES with information-geometric trust regions, Gecco 2017



Comparison to original CMA-ES

Difference to CMA-ES:

• CMA-ES does not use bound but KL-regularizer

• CMA-ES only uses KL regularizer for covariance

• Mean is just weighted ML, stepsize is based on heuristics

Evaluation on optimization functions

84



Comparison to original CMA-ES

Difference to CMA-ES:

• Bound is essential for non-continuous performance function

Evaluation on table tennis:

85



Wrap-up: Two different objectives

Average Reward:

• Exact information-gain bound works well

• Can use compatible function approximation

Weighted Log-Likelihood:

• Convex surrogate for average reward

• Exact moment-bound works well

Relations (and combinations) of both still need to be understood

• In the approximate case, both bound formulations are equivalent

86



Outlook & further reading

Survey papers:
• [Deisenroth, Neumann & Peters: A survey on policy search for robotics, FNT, 2013]

• [Kober, Bagnell & Peters: Reinforcement Learning for Robotics: A survey, IJJR 2013]

Sample-efficient learning from high-dimensional sensory data

• Tactile and vision data [van Hoof 2015][Levine et al. 2016]

• Transfer from simulation to real robots [Russo et al. 2016, Levine et al. 2016a]

• Deep kernel-based methods [Wilson et al. 2016]

Hierarchical Policy Search

• Identify set of re-useable skills [Daniel et al 2016, Bacon et al 2016]

• Learn to select, adapt, sequence and combine these skills [Daniel 2016b, Neumann 2014]

• Deep hierarchical policy search [Bacon et al 2016]

Incorporate human feedback

• Inverse RL and Preference Learning [Finn 2016][Akrour et al. 2013][Wirth  et al. 2016, ]

• Adverserial imitation learning [Ermon 2016]

87
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Reinforcement Learning for Multi-Agent Systems

How can we scale such approaches to multiple agents?

89 | Gerhard Neumann | Cyberphysical Systems Summer School 2017 | Lucca

Agent n

Environment

Agent 1

…
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Decentralized-POMDPs

A Dec-POMDP is defined by:

• its state space 

• An action space       for agent i

• An observation space        for agent i

• its transition dynamics  

• observation model per agent 

• A shared reward function for all agents

• and its initial state probabilities

There is a common goal (reward): collaborative agents

We do not know what the other agents observed 

Agent 1

Observation 
Model

Policystate action

observation

Agent 2

Observation 
Model

Policystate action

observation

…
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Partially Observable Stochastic Games (POSG)

A POSG is defined by:

• its state space 

• An action space       for agent i

• An observation space        for agent i

• its transition dynamics  

• observation model per agent 

• An individual reward function for all agents

• and its initial state probabilities

Competitive agents -> That’s the hardest case!

Agent 1

Observation 
Model

Policystate action

observation

Agent 2

Observation 
Model

Policystate action

observation

…



Collaborative vs. Competitive Learning

Collaborative Agents:

• Increased dimensionality

• Each agent is only controlling a subset of
the total action space

• Actions of other agents are perceived as
noise in the transitions

• Typically heterogenous: Agents share the
same policy

• Common goal: Each agent will find similar
policy updates

• Stable learning can be achieved

92 | Gerhard Neumann | Cyberphysical Systems Summer School 2017 | Lucca

Competitive Agents:

• Simultaneous moves: Agents do not see
moves of other agents immediatly

• If I change my policy, how will competing
agents react?

• We can use solution concepts from game 
theory (e.g. Nash Equilibrium) to get a 
stable solution

• Computationally very demanding

• Inherently unstable if standard
reinforcement learning is used



Partial observability

How do we deal with local observations?

• For optimal decisions, just the current observation is not enough

Two alternative state representations:

Belief state:  

Probability distribution over states, given past observations

✓ Compact representation of the agent’s knowledge (sufficient statistics)

× Complex to compute, needs a model

Information state:

Information state incorporates whole history

✓ Simple

× Very high dimensional

Approximation: Cut history at certain length

93 | Gerhard Neumann | Cyberphysical Systems Summer School 2017 | Lucca

✓ Deep Neural Networks



Policy Search for Robot Swarms

Many agents with only local observations

• Ability to accomplish sophisticated tasks (inspired by natural swarms)

• Local observations

• Decentralized decision making

• Learning in swarm systems is very difficult

Robot Platform:

94

Colias



Deep RL Algorithms

Adaptations for Multi-Agent Learning with Homogeneous Agents

• Policies are shared across agents

• The policy gets the local observation-history as inputs

• Trust Region Policy Optimization (TRPO):

• Use transitions from all agents to estimate gradient

• Scales well to Deep Neural Networks



Tasks

• Simulations use Box2D for physically correct collision and movement

• Hand-coded communication model includes histograms of distance and bearing 
to neighbouring agents

Three different tasks:

• Push: Agents need to learn how to push an intruder away from a simulated light source, 
added information about intruder

• Edge: Agents shall find a constellation to stay within a certain range to each other while 
avoiding collisions

• Chain: Agents shall bridge two points (e.g. a food source and a nest) and keep up the 
connections, added information about shortest paths



Results: Push Task

• Red agent uses hand-coded phototaxis
behaviour to reach center of the world

• Green agents execute learned policy 
to push red agent as far as possible 
away from center

Observations:

• 3 bump sensors for short range collision 
avoidance

• distance to red agent if in range

• Histogram over distances of green agents 
in range



Results: Edge Task

• Agents receive positive reward for 
each edge they form

• an edge forms if two agents are within 
the bright green bands 

• negative reward for being too close to 
each other

Observations:

• 3 bump sensors

• 2D histogram over distance/bearing to 
other agents in range



Results: Chain Task

• Agents start at a source and try to find 
and maintain a link to a sink of some 
sort

Observations include:

• 3 bump sensors

• Two 2D histograms over distance/bearing 
to other agents within range

• 1: Agents seeing source

• 2: agents seeing sink



Conclusion

Policy Search Methods have made a tremendous development !

Trajectory-based: 

• Data efficient learning of rather simple policies

• No feedback

• „Robot-friendly“ exploration

Action-based: 

• can learn deep policies

• not sample efficient

• Uncorrelated exploration

Finding the right metric is the key to efficient and robust exploration!

• Approximate KL bounds: symmetric, but loose information

• Information KL bounds: Suitable for average return formulation

• Moment KL bounds: Suiteable for maximum likelihood formulation10
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Conclusion

Policy Search Methods for Multi-Agent Systems

• Learn complex policies using observation histories

• Deep RL algorithms scale well to the multi-agent case

• They do need millions of examples

Open Problems:

• Learning Communication

• Internal memory

• Specialization of Agents

• Physical Interaction

• Learning with real robots

10
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