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Probabilistic Model Checking

Model Checking in a Nutshell
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Probabilistic Model Checking

Gödel Prize 2000

Moshe Vardi
Pierre Wolper

“For work on model checking with finite automata.“

Some other winners: Shor, Sénizergues, Agrawal et al., Spielman and Teng, . . .
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Probabilistic Model Checking

ACM System Software Award 2001

Gerard J. Holzmann
SPIN book

“SPIN is a popular open-source software tool, used by
thousands of people worldwide, that can be used for the

formal verification of distributed software systems.”

Some other winners: TeX, Postscript, UNIX, TCP/IP, Java, Smalltalk, . . .
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Probabilistic Model Checking

ACM Turing Award 2007

Edmund Clarke E. Allen Emerson Joseph Sifakis

“For their role in developing model checking into a
highly effective verification technology,

widely adopted in the hardware and software industries.“

Some other winners: Wirth, Dijkstra, Cook, Hoare, Rabin and Scott, . . .
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Probabilistic Model Checking

Striking Examples

▸ Needham-Schroeder protocol

▸ IEEE cache coherence protocol

▸ Hardware property languages like PSL

▸ C, .NET code verification

▸ NASA space mission software

▸ Storm surge barrier Maeslantkering

▸ . . . . . . . . .
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Probabilistic Model Checking

Storm Surge Barrier Maeslantkering
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Probabilistic Model Checking

Storm Surge Barrier Maeslantkering
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Probabilistic Model Checking

What is This Lecture About?

“Probabilistic model checking is one of the main challenges for the future.”

Edmund J. Clarke

The Birth of Model Checking, 2008

Joost-Pieter Katoen Performance+Reliability by Model Checking 12/131



Probabilistic Model Checking

What is This Lecture About?

“A promising new direction in formal methods research these days is
the development of probabilistic models, with associated tools

for quantitative evaluation of system performance along with correctness.”
.

ACM SIGLOG News 2015
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The Relevance of Probabilities

Almost Ten Reasons for Probabilities

1. Randomised Algorithms

2. Reducing Complexity

3. Avoiding the Impossible

4. Probabilistic Programs

5. Reliability

6. Performance

7. Robotics

8. Optimisation

9. Systems Biology
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The Relevance of Probabilities

Randomised Algorithms: Simulating a Die [Knuth & Yao, 1976]

Heads = “go left”; tails = “go right”. Does this model a six-sided die?
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The Relevance of Probabilities

Avoiding the Impossible

FLP impossibility result [Fischer et al., 1985]

In an asynchronous setting, where only one processor might crash, there is no

distributed algorithm that solves the consensus problem—getting a distributed

network of processors to agree on a common value.
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The Relevance of Probabilities

Avoiding the Impossible

FLP impossibility result [Fischer et al., 1985]

In an asynchronous setting, where only one processor might crash, there is no

distributed algorithm that solves the consensus problem—getting a distributed

network of processors to agree on a common value.

Ben-Or’s possibility result [Ben-Or, 1983]

If a process can make a decision based on its internal state, the message
state, and some probabilistic state, consensus in an asynchronous setting is
almost surely possible.
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The Relevance of Probabilities

Reliability Engineering
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The Relevance of Probabilities

Reliability: Dynamic Fault Trees [Dugan et al., 1990]
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The Relevance of Probabilities

A Fault Tree Example
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The Relevance of Probabilities

A Fault Tree Example

(D)FTs: one of —if not the— most prominent models for risk analysis

Aims: quantify system reliability and availability, MTTF, . . . . . .
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The Relevance of Probabilities

Performance: GSPNs [Ajmone Marsan et al, 1984]

The early days:
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Performance: GSPNs [Ajmone Marsan et al, 1984]

The early days:

More modern times: Petri nets with

▸ Timed transitions

▸ Immediate transitions

▸ Natural weights
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The Relevance of Probabilities

Performance: GSPNs [Ajmone Marsan et al, 1984]

The early days:

More modern times: Petri nets with

▸ Timed transitions

▸ Immediate transitions

▸ Natural weights

t0

k0
t1

k1

t2 k2

λ

µ

Aims: quantify arrivals, waiting times, QoS, soft deadlines, . . . . . .

GSPNs: very —if not the most— popular in performance modeling
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The Relevance of Probabilities

Encyclopedia of Optimisation 2008
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The Relevance of Probabilities

Stochastic Scheduling [Bruno et al., 1981]

▸ Job processing times are subject to random variability
▸ machine breakdowns and repairs, job parameters, . . .
▸ N independent jobs with mean duration 1

µi

▸ M identical machines
▸ job processing with (or without) pre-emption

▸ Objective = minimal expected makespan, i.e., finishing time of last job

▸ SEPT policy yields minimal expected makespan

“it is hard to calculate these expected values”

Which policy maximises the probability to finish all jobs on time?
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The Relevance of Probabilities

Stochastic Model
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The Relevance of Probabilities

Nature Behaviour: Systems Biology

Enzyme-catalysed substrate conversion
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The Relevance of Probabilities

Stochastic Chemical Kinetics

▸ Types of reaction described by stochiometric equations:

E + S
k1

⇌
k2

C
k3→ E + P

▸ N different types of molecules that randomly collide

where state X(t) = (x1, . . . , xN) with xi =# molecules of sort i
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⇌
k2

C
k3→ E + P

▸ N different types of molecules that randomly collide

where state X(t) = (x1, . . . , xN) with xi =# molecules of sort i

▸ Reaction probability within infinitesimal interval [t, t+∆):
αm(x⃗) ⋅∆ = Pr{reaction m in [t, t+∆) ∣ X(t) = x⃗}

where αm(x⃗) = km ⋅ # possible combinations of reactant molecules in x⃗
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The Relevance of Probabilities

Stochastic Chemical Kinetics

▸ Types of reaction described by stochiometric equations:

E + S
k1

⇌
k2

C
k3→ E + P

▸ N different types of molecules that randomly collide

where state X(t) = (x1, . . . , xN) with xi =# molecules of sort i

▸ Reaction probability within infinitesimal interval [t, t+∆):
αm(x⃗) ⋅∆ = Pr{reaction m in [t, t+∆) ∣ X(t) = x⃗}

where αm(x⃗) = km ⋅ # possible combinations of reactant molecules in x⃗

▸ Process has the Markov property and is time-homogeneous
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The Relevance of Probabilities

Substrate Conversion in the Small
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States: init goal

enzymes 2 2
substrates 4 0
complex 0 0
products 0 4

Transitions: E + S
1
⇌
1
C

0.001
→ E + P

e.g., (xE , xS , xC , xP)
0.001⋅xC
→ (xE + 1, xS , xC − 1, xP + 1) for xC > 0
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Markov Models

Common Feature

All these applications consider Markov models1

1Non-exponential distributions are approximated by phase-type distributions.
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Markov Models

Discrete-Time Markov Models

A Markov chain
for Knuth-Yao’s algorithm

A Markov decision process
for a probabilistic program
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Markov Models

Continuous-Time Markov Models
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for substrate conversion
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A Markov decision process
for the GSPN

Joost-Pieter Katoen Performance+Reliability by Model Checking 31/131



Markov Models

Continuous-Time Markov Models

Markov decision process

for stochastic scheduling
Markov decision process for a DFT
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Markov Models

Markov Models

Discrete Continuous

Deterministic discrete-time continuous-time MC
Markov chain (DTMC)

Nondeterministic Markov decision CTMDP
process (MDP)

Compositional Segala’s probabilistic Markov
automata (PA) automata (MA)

Other models: e.g., probabilistic timed automata, pVASS, pPDA, SGs, etc.
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Key Algorithms
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Key Algorithms

Properties

Discrete Continuous

Logic probabilistic probabilistic
CTL timed CTL

Monitors deterministic automata deterministic
(safety and LTL) timed automata

(MITL fragments)

Others: e.g., conditional probs, multi-objective, rewards, quantiles, etc.

Core problem: computing (timed) reachability probabilities
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Key Algorithms

Reachability Probabilities

Problem

Consider a finite MC with s ∈ S and G ⊆ S .

Aim: determine Pr(s ⊧◇G) = Prs{π ∈ Paths(s) ∣ π ⊧◇G }
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Problem

Consider a finite MC with s ∈ S and G ⊆ S .

Aim: determine Pr(s ⊧◇G) = Prs{π ∈ Paths(s) ∣ π ⊧◇G }
Characterisation of reachability probabilities

▸ Let variable xs = Pr(s ⊧◇G) for any state s

▸ if G is not reachable from s, then xs = 0
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Key Algorithms

Reachability Probabilities

Problem

Consider a finite MC with s ∈ S and G ⊆ S .

Aim: determine Pr(s ⊧◇G) = Prs{π ∈ Paths(s) ∣ π ⊧◇G }
Characterisation of reachability probabilities

▸ Let variable xs = Pr(s ⊧◇G) for any state s

▸ if G is not reachable from s, then xs = 0
▸ if s ∈ G then xs = 1
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Key Algorithms

Reachability Probabilities

Problem

Consider a finite MC with s ∈ S and G ⊆ S .

Aim: determine Pr(s ⊧◇G) = Prs{π ∈ Paths(s) ∣ π ⊧◇G }
Characterisation of reachability probabilities

▸ Let variable xs = Pr(s ⊧◇G) for any state s

▸ if G is not reachable from s, then xs = 0
▸ if s ∈ G then xs = 1

▸ For any state s ∈ Pre
∗(G) ∖G :
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Key Algorithms

Reachability Probabilities

Problem

Consider a finite MC with s ∈ S and G ⊆ S .

Aim: determine Pr(s ⊧◇G) = Prs{π ∈ Paths(s) ∣ π ⊧◇G }
Characterisation of reachability probabilities

▸ Let variable xs = Pr(s ⊧◇G) for any state s

▸ if G is not reachable from s, then xs = 0
▸ if s ∈ G then xs = 1

▸ For any state s ∈ Pre
∗(G) ∖G :

xs = ∑
t∈S∖G

P(s, t) ⋅ xt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

reach G via t ∈ S ∖G

+ ∑
u∈G

P(s,u)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

reach G in one step
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Key Algorithms

Reachability Probabilities: Knuth-Yao’s Die

▸ Consider the event ◇4
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Key Algorithms

Reachability Probabilities: Knuth-Yao’s Die

▸ Consider the event ◇4

▸ We obtain:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1
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Key Algorithms

Reachability Probabilities: Knuth-Yao’s Die

▸ Consider the event ◇4

▸ We obtain:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1

xs1 = xs3 = xs4 = 0
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Key Algorithms

Reachability Probabilities: Knuth-Yao’s Die

▸ Consider the event ◇4

▸ We obtain:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1

xs1 = xs3 = xs4 = 0

xs0 =
1

2
xs1 + 1

2
xs2

Joost-Pieter Katoen Performance+Reliability by Model Checking 37/131



Key Algorithms

Reachability Probabilities: Knuth-Yao’s Die

▸ Consider the event ◇4

▸ We obtain:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1

xs1 = xs3 = xs4 = 0

xs0 =
1

2
xs1 + 1
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xs2

xs2 =
1

2
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1

2
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Key Algorithms

Reachability Probabilities: Knuth-Yao’s Die

▸ Consider the event ◇4

▸ We obtain:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1

xs1 = xs3 = xs4 = 0

xs0 =
1

2
xs1 + 1

2
xs2

xs2 =
1

2
xs5 + 1

2
xs6

xs5 =
1

2
x5 + 1

2
x4

xs6 =
1

2
xs2 + 1

2
x6

▸ Gaussian elimination yields:

xs5 =
1

2
, xs2 =

1

3
, xs6 =

1

6
, and xs0 =

1

6
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Key Algorithms

Reachability Probabilities are Pivotal

▸ Repeated reachability Pr(s ⊧ ◻◇G):
Determine probability to reach a terminal SCCs containing a G -state
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▸ Probabilistic CTL model checking

Recursive descent on parse tree using reach-probabilities at nodes
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1. Transform ϕ into a deterministic (Rabin) automaton
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Key Algorithms

Reachability Probabilities are Pivotal

▸ Repeated reachability Pr(s ⊧ ◻◇G):
Determine probability to reach a terminal SCCs containing a G -state

▸ Probabilistic CTL model checking

Recursive descent on parse tree using reach-probabilities at nodes

▸ LTL formulas Pr(s ⊧ ϕ):
1. Transform ϕ into a deterministic (Rabin) automaton
2. Take the product of the Markov chain and the automaton
3. Determine the probability to reach an accepting terminal SCC from s

For MDPs, solving linear inequality systems are key.
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Key Algorithms

Randomised Algorithms: Simulating a Die [Knuth & Yao, 1976]

Probability of after initial tails, yield 1 or 3 but with at most five tails in total?
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Key Algorithms

Property of Knuth-Yao’s Algorithm

After initial tails, yield 1 or 3 but with at most five times tails in total
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Key Algorithms

Product Markov Chain

Reachability probability of terminal SCC with (⋅,qacc) is 1

8
+ 1

8
+ 1

32
+ 1

32
=

5

16
.
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Key Algorithms

Probabilistic CTL [Hansson & Jonsson, 1989]
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Key Algorithms

Probabilistic CTL [Hansson & Jonsson, 1989]

▸ PCTL interpretation is Boolean, i.e., a formula is satisfied or not.
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Key Algorithms

Probabilistic CTL [Hansson & Jonsson, 1989]

▸ PCTL interpretation is Boolean, i.e., a formula is satisfied or not.

▸ For path-formula ϕ and threshold ≻p with ≻∈ {>,⩾} and p ∈ Q:

PCTL-formula [ϕ]≻p denotes

all paths satisfying ϕ occur with probability ≻p

▸ [⋅]≻p is probabilistic counterpart of CTL path-quantifiers ∃ and ∀.
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Key Algorithms

Probabilistic CTL [Hansson & Jonsson, 1989]

▸ PCTL interpretation is Boolean, i.e., a formula is satisfied or not.

▸ For path-formula ϕ and threshold ≻p with ≻∈ {>,⩾} and p ∈ Q:

PCTL-formula [ϕ]≻p denotes

all paths satisfying ϕ occur with probability ≻p

▸ [⋅]≻p is probabilistic counterpart of CTL path-quantifiers ∃ and ∀.

▸ Examples: [◇a]>1/2, [◇[◻a]=1]>1/2 and [◻(¬a ∧ [◇a]>0)]>0.
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Key Algorithms

Probabilistic CTL [Hansson & Jonsson, 1989]

▸ PCTL interpretation is Boolean, i.e., a formula is satisfied or not.

▸ For path-formula ϕ and threshold ≻p with ≻∈ {>,⩾} and p ∈ Q:

PCTL-formula [ϕ]≻p denotes

all paths satisfying ϕ occur with probability ≻p

▸ [⋅]≻p is probabilistic counterpart of CTL path-quantifiers ∃ and ∀.

▸ Examples: [◇a]>1/2, [◇[◻a]=1]>1/2 and [◻(¬a ∧ [◇a]>0)]>0.

PCTL model checking is in P.
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Key Algorithms

CTL versus Probabilistic CTL

▸ Qualitative PCTL (only >0− bounds) and CTL are incomparable.

1. There is no CTL formula that is equivalent to [◇a]=1.
2. There is no PCTL formula that is equivalent to ∀◇a.

▸ These results all rely on countably infinite MCs

1. For finite MCs, [◇a]=1 ≡ ∀◇a under fairness.
2. For finite MCs, ◇◻-modalities are PCTL-definable, but not in CTL.

Joost-Pieter Katoen Performance+Reliability by Model Checking 43/131



Key Algorithms

Random Timing
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Key Algorithms

Continuous-Time Markov Chains

A CTMC is a DTMC with an exit rate function r ∶ S → R>0 where r(s) is
the rate of an exponential distribution.
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Key Algorithms

Zenoness

Zeno theorem

In every CTMC, almost surely no Zeno runs occur.

In contrast to timed automata verification, Zeno runs thus pose no problem.
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Key Algorithms

Timed Reachability Probabilities

Problem

Consider a finite CTMC with s ∈ S , t ∈ R⩾0 and G ⊆ S .

Aim: determine Pr(s ⊧◇⩽t G).
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Consider a finite CTMC with s ∈ S , t ∈ R⩾0 and G ⊆ S .

Aim: determine Pr(s ⊧◇⩽t G).
Characterisation of timed reachability probabilities

▸ Let function xs(t) = Pr(s ⊧◇⩽t G) for any state s
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Aim: determine Pr(s ⊧◇⩽t G).
Characterisation of timed reachability probabilities

▸ Let function xs(t) = Pr(s ⊧◇⩽t G) for any state s
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Key Algorithms

Timed Reachability Probabilities

Problem

Consider a finite CTMC with s ∈ S , t ∈ R⩾0 and G ⊆ S .

Aim: determine Pr(s ⊧◇⩽t G).
Characterisation of timed reachability probabilities

▸ Let function xs(t) = Pr(s ⊧◇⩽t G) for any state s

▸ if G is not reachable from s, then xs(t) = 0 for all t
▸ if s ∈ G then xs(t) = 1 for all t
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Key Algorithms

Timed Reachability Probabilities

Problem

Consider a finite CTMC with s ∈ S , t ∈ R⩾0 and G ⊆ S .

Aim: determine Pr(s ⊧◇⩽t G).
Characterisation of timed reachability probabilities

▸ Let function xs(t) = Pr(s ⊧◇⩽t G) for any state s

▸ if G is not reachable from s, then xs(t) = 0 for all t
▸ if s ∈ G then xs(t) = 1 for all t

▸ For any state s ∈ Pre
∗(G) ∖G :
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Key Algorithms

Timed Reachability Probabilities

Problem

Consider a finite CTMC with s ∈ S , t ∈ R⩾0 and G ⊆ S .

Aim: determine Pr(s ⊧◇⩽t G).
Characterisation of timed reachability probabilities

▸ Let function xs(t) = Pr(s ⊧◇⩽t G) for any state s

▸ if G is not reachable from s, then xs(t) = 0 for all t
▸ if s ∈ G then xs(t) = 1 for all t

▸ For any state s ∈ Pre
∗(G) ∖G :

xs(t) = ∫
t

0
∑
s′∈S

R(s, s ′) ⋅ e−r(s)⋅x´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
probability to move to

state s ′ at time x

⋅ xs′(t−x)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
prob. to fulfill

◇⩽t−x G from s ′

dx
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Key Algorithms

Timed Reachability Probabilities

Integral equations for ◇⩽10 2:

▸ x3(d) = 0 and x2(d) = 1 for all d

▸ x0(d) = ∫ d

0

25/4⋅e−25⋅x ⋅x1(d−x) + 25/4⋅e−25⋅x ⋅x2(d−x) dx
▸ x1(d) = ∫ d

0

4/2⋅e−4⋅x ⋅x0(d−x) + 4/2⋅e−4⋅x ⋅x3(d−x) dx
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Key Algorithms

Timed Reachability Probabilities

Reachability probabilities

Solve a system of linear equations for which many efficient techniques exist.
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Key Algorithms

Timed Reachability Probabilities

Reachability probabilities

Solve a system of linear equations for which many efficient techniques exist.

Timed reachability probabilities

Solve a system of Volterra integral equations.
Non-trivial, inefficient, and has several pitfalls such as numerical stability.
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Key Algorithms

Timed Reachability Probabilities

Reachability probabilities

Solve a system of linear equations for which many efficient techniques exist.

Timed reachability probabilities

Solve a system of Volterra integral equations.
Non-trivial, inefficient, and has several pitfalls such as numerical stability.

Solution

Reduce Pr(s ⊧◇⩽t G) to computing transient probabilities.
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Key Algorithms

Timed Reachability Probabilities = Transient Probabilities

Aim

Compute Pr(s ⊧◇⩽tG) in CTMC C. Observe that once a path π reaches
G within t time, then the remaining behaviour along π is not important.
⇒ make all states in G absorbing.
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Key Algorithms

Timed Reachability Probabilities = Transient Probabilities

Aim

Compute Pr(s ⊧◇⩽tG) in CTMC C. Observe that once a path π reaches
G within t time, then the remaining behaviour along π is not important.
⇒ make all states in G absorbing.

Pr(s ⊧◇⩽t G)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
timed reachability in C

= Pr(s ⊧◇=t G)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
timed reachability in C[G]

= p⃗(t) with p⃗(0) = 1s´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
transient prob. in C[G]

.
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Key Algorithms

Timed Reachability Probabilities = Transient Probabilities

Aim

Compute Pr(s ⊧◇⩽tG) in CTMC C. Observe that once a path π reaches
G within t time, then the remaining behaviour along π is not important.
⇒ make all states in G absorbing.

Pr(s ⊧◇⩽t G)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
timed reachability in C

= Pr(s ⊧◇=t G)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
timed reachability in C[G]

= p⃗(t) with p⃗(0) = 1s´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
transient prob. in C[G]

.

Transient probabilities can be efficiently computed as solutions of linear

differential equations.
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Key Algorithms

Computing Transient Probabilities

By solving a linear differential equation system

The transient probability vector p(t) = (ps1(t), . . . ,psk (t)) satisfies:

p′(t) = p(t) ⋅ (R − r) given p(0)
where r is the diagonal matrix of vector r .

219 dubious ways to compute a matrix exponential [Moler & Van Loan, 1978/2003].
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By solving a linear differential equation system

The transient probability vector p(t) = (ps1(t), . . . ,psk (t)) satisfies:

p′(t) = p(t) ⋅ (R − r) given p(0)
where r is the diagonal matrix of vector r .

Solution using standard knowledge yields: p(t) = p(0)⋅e(R−r)⋅t .

219 dubious ways to compute a matrix exponential [Moler & Van Loan, 1978/2003].
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Key Algorithms

Computing Transient Probabilities

By solving a linear differential equation system

The transient probability vector p(t) = (ps1(t), . . . ,psk (t)) satisfies:

p′(t) = p(t) ⋅ (R − r) given p(0)
where r is the diagonal matrix of vector r .

Solution using standard knowledge yields: p(t) = p(0)⋅e(R−r)⋅t .
Computing the matrix exponential is a challenging numerical problem2.

219 dubious ways to compute a matrix exponential [Moler & Van Loan, 1978/2003].
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Key Algorithms

Uniformisation

CTMC C is uniform if r(s) = r for all s ∈ S for some r ∈ R>0.
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Uniformisation

CTMC C is uniform if r(s) = r for all s ∈ S for some r ∈ R>0.

Uniformisation [Jensen, 1953] [Gross and Miller, 1984]

Let r ∈ R>0 such that r ⩾ maxs∈S r(s).
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CTMC C is uniform if r(s) = r for all s ∈ S for some r ∈ R>0.

Uniformisation [Jensen, 1953] [Gross and Miller, 1984]

Let r ∈ R>0 such that r ⩾ maxs∈S r(s). Then r(C) is the CTMC C with two
changes: r(s) = r for all s ∈ S
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Key Algorithms

Uniformisation

CTMC C is uniform if r(s) = r for all s ∈ S for some r ∈ R>0.

Uniformisation [Jensen, 1953] [Gross and Miller, 1984]

Let r ∈ R>0 such that r ⩾ maxs∈S r(s). Then r(C) is the CTMC C with two
changes: r(s) = r for all s ∈ S , and:

P(s, s ′) = r(s)
r

⋅P(s, s ′) if s ′ ≠ s and P(s, s) = r(s)
r

⋅P(s, s) + 1 − r(s)
r

.

P is a stochastic matrix and r(C) is uniform.
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Key Algorithms

Uniformisation by Example

Uniformisation amounts to normalise the residence time in every CTMC state.
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Key Algorithms

Benefits of Uniformisation

Transient probabilities of a CTMC and its uniformized CTMC coincide.

Thus: p(t) = p(0)⋅e(R−r)⋅t´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
transient probablity in C

=
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Key Algorithms

Benefits of Uniformisation

Transient probabilities of a CTMC and its uniformized CTMC coincide.

Thus: p(t) = p(0)⋅e(R−r)⋅t´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
transient probablity in C

= p(0)⋅e(R−r)⋅t´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
transient probablity in r(C)

= p(0)⋅e−r ⋅t ⋅er ⋅t⋅P

Still a matrix exponential remains. Did we gain anything?

Yes. Since P is stochastic, Taylor-Maclaurin yields ∑i . . .P
i
.
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Key Algorithms

Other Properties on CTMCs

▸ Expected time objectives

Can be characterised as solution of set of linear equations

3This yields a piecewise deterministic Markov process.
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Key Algorithms

Other Properties on CTMCs

▸ Expected time objectives

Can be characterised as solution of set of linear equations

▸ Long-run average objectives

1. Determine the limiting distribution in any terminal SCC
2. Take weighted sum with reachability probabilities terminal SCCs

3This yields a piecewise deterministic Markov process.
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Other Properties on CTMCs

▸ Expected time objectives

Can be characterised as solution of set of linear equations

▸ Long-run average objectives

1. Determine the limiting distribution in any terminal SCC
2. Take weighted sum with reachability probabilities terminal SCCs

▸ Probabilistic timed CTL model checking

recursive descent over parse tree

3This yields a piecewise deterministic Markov process.
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Key Algorithms

Other Properties on CTMCs

▸ Expected time objectives

Can be characterised as solution of set of linear equations

▸ Long-run average objectives

1. Determine the limiting distribution in any terminal SCC
2. Take weighted sum with reachability probabilities terminal SCCs

▸ Probabilistic timed CTL model checking

recursive descent over parse tree

▸ Deterministic timed automata objectives

1. Take product of the MC and the Zone automaton of the DTA3

2. Determine the probability to reach an accepting zone

3This yields a piecewise deterministic Markov process.
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Key Algorithms

Timed Reachability in CTMDPs is Hard
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Key Algorithms

Timed Reachability in CTMDPs is Hard

▸ Timed policies are optimal; any time-abstract policy is inferior.

▸ If long time remains: choose β; if short time remains: choose α.

▸ Optimal for deadline 1: choose α if 1−t0 ⩽ ln 3 − ln 2, otherwise β
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Key Algorithms

Probabilistic Model Checkers

▸ PRISM
4 [Kwiatkowska, Parker et al.]

▸ MRMC [Katoen et al.]

▸ iscasMC [Zhang et al.]

▸ iBioSim [Myers et al.]

▸ GreatSPN [Franceschinis et al.]

▸ SMART [Ciardo et al.]

▸ MarCie [Heiner et al.]

▸ PAT [Song Dong et al.]

▸ SToRM [Dehnert, Katoen et al.]

▸ . . . . . .

Statistical model checkers: Ymer, Vesta, UppAal-SMC, PlasmaLab, . . . . . .

4Recipient HVC Award 2016.
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Key Algorithms

The Probabilistic Model Checker SToRM

Supports Markov chains, CTMCs, MDPs, and CTMDPs

About 100,000 lines of C++ code
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Key Algorithms

Comparison to PRISM

More information at: stormchecker.org
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Key Algorithms

Experimental Comparison

Comparing the best engines for all
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Model Checking Fault Trees

Overview

Probabilistic Model Checking

The Relevance of Probabilities

Markov Models

Key Algorithms

Model Checking Fault Trees

Parameter Synthesis

Epilogue
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Model Checking Fault Trees

Fault Tree Analysis
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Model Checking Fault Trees

Dynamic Fault Trees [Dugan et al., 1995]

Markov decision process for a DFT
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Model Checking Fault Trees

Experiences with FT model checking

▸ Logics like PCTL allow for expressing more properties
▸ but hide logics as far as possible: use specification patterns or so

▸ Enable the analysis of a larger class of DFTs

▸ Model checking mostly substantially faster than FT analysis

▸ Abstraction aggravates this–for traditional FTA–even further:
1. compositional minimisation
2. tailored abstractions for FTs
3. symmetry reduction and modularisation on FTs
4. aggressive abstraction on FTs

yield several orders of magnitude improvements.
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Model Checking Fault Trees

Probabilistic Bisimulation

Intuition: transition probabilities for each equivalence class coincide.
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Model Checking Fault Trees

Probabilistic Bisimulation

Intuition: transition probabilities for each equivalence class coincide.

Probabilistic bisimulation [Larsen & Skou, 1989]

Consider a DTMC with state space S and equivalence R ⊆ S × S .
R is a probabilistic bisimulation on S if for any (s, t) ∈ R:

L(s) = L(t) and P(s,C) = P(t,C) for each C ∈ S/R
where P(s,C) = ∑s′∈C P(s, s ′).
Let ∼ denote the largest possible probabilistic bisimulation.
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Model Checking Fault Trees

Probabilistic Bisimulation

Intuition: transition probabilities for each equivalence class coincide.

Probabilistic bisimulation [Larsen & Skou, 1989]

Consider a DTMC with state space S and equivalence R ⊆ S × S .
R is a probabilistic bisimulation on S if for any (s, t) ∈ R:

L(s) = L(t) and P(s,C) = P(t,C) for each C ∈ S/R
where P(s,C) = ∑s′∈C P(s, s ′).
Let ∼ denote the largest possible probabilistic bisimulation.

Variants: weak, divergence-sensitive, distribution-based, for CTMC, MDPs, etc.

Joost-Pieter Katoen Performance+Reliability by Model Checking 65/131



Model Checking Fault Trees

Craps

▸ Come-out roll:
▸ 7 or 11: win
▸ 2, 3, or 12:

lose
▸ else: roll

again

▸ Next roll(s):
▸ 7: lose
▸ point: win
▸ else: roll

again
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Model Checking Fault Trees

Craps’s Bisimulation Quotient
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Model Checking Fault Trees

Properties

Quotienting: using partition-refinement in O(∣P∣⋅ log ∣S ∣)
Preservation: all probabilistic CTL∗-formulas

Congruence: with respect to parallel composition

(M1 ∼N1 and M2 ∼N2) implies M1 ∣∣M2 ∼N1 ∣∣N2

Stuttering: weak variants preserve PCTL∗ without next-modalities

Savings: potentially exponentially in time and space
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Model Checking Fault Trees

Exploiting Compositionality [Hermanns and K., 2000]

▸ Assume system is given by:

M1 ∣∣ . . . ∣∣Mi ∣∣ . . . ∣∣Mk

with Mj a Markov automaton and CSP-like composition ∣∣
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Model Checking Fault Trees

Exploiting Compositionality [Hermanns and K., 2000]

▸ Assume system is given by:

M1 ∣∣ . . . ∣∣Mi ∣∣ . . . ∣∣Mk

with Mj a Markov automaton and CSP-like composition ∣∣
▸ Recall congruence property:

(M1 ∼ N1 and M2 ∼ N2) implies M1 ∣∣M2 ∼ N1 ∣∣N2
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Model Checking Fault Trees

Exploiting Compositionality [Hermanns and K., 2000]

▸ Assume system is given by:

M1 ∣∣ . . . ∣∣Mi ∣∣ . . . ∣∣Mk

with Mj a Markov automaton and CSP-like composition ∣∣
▸ Recall congruence property:

(M1 ∼ N1 and M2 ∼ N2) implies M1 ∣∣M2 ∼ N1 ∣∣N2

▸ Component-wise minimisation

1. Pick process Mi and consider its quotient Mi/∼ under ∼
2. Yielding M1 ∣∣ . . . ∣∣Mi/∼ ∣∣ . . . ∣∣Mk ; repeat 1. and 2.
3. Once all done, minimise pairs Mi/∼ ∣∣Mi+1/∼ etc.
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Model Checking Fault Trees

Compositional DFT Minimisation [Crouzen et al., 2010]
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Model Checking Fault Trees

Compositional DFT Minimisation [Crouzen et al., 2010]
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Comparing Galileo DIFTree (top) to DFTCalc (bottom)
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Model Checking Fault Trees

Compositional DFT Minimisation [Crouzen et al., 2010]
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CAS 8 10 .65790 1
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NDPS X X X X

CPS 133 465 .00135 67
CAS 36 119 .65790 94
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Model Checking Fault Trees

Compositional DFT Minimisation [Crouzen et al., 2010]
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CPS 4113 24608 .00135 490
CAS 8 10 .65790 1

CAS-PH X X X X

NDPS X X X X

FTTP-4 32757 426826 .01922 13111
FTTP-5 MO MO MO MO

CPS 133 465 .00135 67
CAS 36 119 .65790 94

CAS-PH 40052 265442 .112 231
NDPS 61 169 [.00586, .00598] 266

FTTP-4 1325 13642 .01922 65
FTTP-6 11806565 22147378 .00045 1989

Comparing Galileo DIFTree (top) to DFTCalc (bottom)
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Model Checking Fault Trees

Tailored DFT Abstraction [Junges et al., 2015]

Key idea

Simplify DFTs by graph rewriting prior to (compositional) state space generation.
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Model Checking Fault Trees

Tailored DFT Abstraction

total verification and minimisation time state space size of resulting CTMDP

49 out of 179 case studies could be treated now that could not be treated before
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Model Checking Fault Trees

Boosting DFT State Space Generation [Volk et al., 2016]

Apply POR, symmetry reduction, bisimulation, and state bit vectors.

⇒ This boosts FT analysis by several orders of magnitude.

Joost-Pieter Katoen Performance+Reliability by Model Checking 74/131



Model Checking Fault Trees

More Aggressive Abstraction

▸ Partition the state space into groups of concrete states
▸ allow any partitioning, not just grouping of bisimilar states
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Model Checking Fault Trees

More Aggressive Abstraction

▸ Partition the state space into groups of concrete states
▸ allow any partitioning, not just grouping of bisimilar states

▸ This typically yields over-approximations
▸ abstraction yields safe bounds on true measures
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Joost-Pieter Katoen Performance+Reliability by Model Checking 75/131



Model Checking Fault Trees

More Aggressive Abstraction

▸ Partition the state space into groups of concrete states
▸ allow any partitioning, not just grouping of bisimilar states

▸ This typically yields over-approximations
▸ abstraction yields safe bounds on true measures

▸ Correctness relies on simulation relations
▸ preserve safety fragments of PCTL

▸ Various abstract probabilistic models exist
▸ two-player SGs, interval MCs, abstract PA, modal models, etc.
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Model Checking Fault Trees

Abstraction-Refinement [Kwiatkowska et al., 2010]

Millions of states can be reduced to hundreds of states in a few AR iterations
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Model Checking Fault Trees

Abstraction-Refinement for DFTs [Volk et al., 2017]

Partial fault tree analysis, making best/worst-case assumptions.

Abstraction-refinement terminates at 10% precision: u−ℓ < 1/10⋅ u−ℓ
2

⇒ Scalable and one order of magnitude faster.

Joost-Pieter Katoen Performance+Reliability by Model Checking 77/131



Model Checking Fault Trees

Safety Analysis of Vehicle Guidance [Ghadhab et al., 2017]

Major safety goal: avoid wrong vehicle guidance.
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Model Checking Fault Trees

Fail Operational

Automotive Safety Integrity Level (ASIL)
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Model Checking Fault Trees

Approach

Vehicle guidance ASIL-D: 10−8 residual HW failures/hour
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Model Checking Fault Trees

Vehicle Guidance

Fail-operational design patterns for autonomous driving.
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Model Checking Fault Trees

Modern Car Architectures

.
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Model Checking Fault Trees

DFT Statistics

One of the largest real-life DFTs in the literature
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Model Checking Fault Trees

Analysis Approach
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Model Checking Fault Trees

Measures
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Model Checking Fault Trees

Model Checking Results
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Parameter Synthesis

Overview

Probabilistic Model Checking

The Relevance of Probabilities

Markov Models

Key Algorithms

Model Checking Fault Trees

Parameter Synthesis

Epilogue
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Parameter Synthesis

The Need for Parameter Synthesis

Fact:
Probabilistic model checking is applicable to various areas, e.g.:

▸ fault trees

▸ randomised algorithms

▸ systems biology

Limitation:
Probabilities need to be known a priori. Is this a valid assumption?
How sensitive are results when transition probabilities fluctuate?

Goal:
Treat parametric models, synthesise “safe” parameter values
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Parameter Synthesis

Biased Knuth-Yao’s Die
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Parameter Synthesis

Biased Knuth-Yao’s Die
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Parameter Synthesis

Parametric Knuth-Yao’s Die

For which 1/10 ⩽ p ⩽ 9/10 and 2/5 ⩽ q ⩽ 3/5 does Pr(◇2) ⩾ 3/20 hold?
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Parameter Synthesis

Conditional Probabilities
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Parameter Synthesis

Parameter Synthesis

Inputs:

1. a (finite) parametric Markov model

2. a property (e.g., reachability, expected reward, conditional reachability)

3. a threshold

Output:

For which parameter values does the pMC satisfy the property
with the given threshold?
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Parameter Synthesis

Parameter Synthesis

Inputs:

1. a (finite) parametric Markov model

2. a property (e.g., reachability, expected reward, conditional reachability)

3. a threshold

Output:

For which parameter values does the pMC satisfy the property
with the given threshold?

Problem instances:

▸ What is the maximal tolerable message loss ensuring delivery ⩾ 98%?

▸ . . . the tolerable failure rate in a DFT ensuring MTTF ⩾ 3 hours?

▸ . . . . . .
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Parameter Synthesis

Recall Dynamic Fault Trees

Markov chain process for a DFT
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Parameter Synthesis

Parametric Fault Trees

0 1 2 3 4 5

0

1

2

3

4

5

β

M
T
T
F

Sample parametric DFT and its MTTF

MTTF =
200x2 + 20x + 201

x ⋅(20x + 201) for (α,β, γ,d) = (10, x ,0.1,0.5)
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Parameter Synthesis

Parameter Synthesis

Aim:
partition the parameter space into safe and unsafe regions
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Parameter Synthesis

Parameter Synthesis

Aim:
partition the parameter space into safe and unsafe regions

▸ Region = half-space defined by linear inequalities over the parameters

▸ A region R for threshold ⩽ β is safe if no MC with v ∈ R exceeds β

▸ A region R for threshold ⩽ β is unsafe if no MC with v ∈ R is at most β
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Parameter Synthesis

Parameter Synthesis

Aim:
partition the parameter space into safe and unsafe regions

▸ Region = half-space defined by linear inequalities over the parameters

▸ A region R for threshold ⩽ β is safe if no MC with v ∈ R exceeds β

▸ A region R for threshold ⩽ β is unsafe if no MC with v ∈ R is at most β

We present two approaches:

1. An exact procedure. How? Using SMT techniques

2. An approximate technique. How? Using parameter lifting
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Parameter Synthesis

Computing Rational Functions [Daws, 2004]

Joost-Pieter Katoen Performance+Reliability by Model Checking 97/131



Parameter Synthesis

Computing Rational Functions [Daws, 2004]

Pr (s0 ⊧◇(1 or 3)) ⩽ 1/3 iff p⋅q⋅ 1−p
1−p⋅q

+ p2⋅ 1−q
1−p⋅q

⩽ 1/3
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Parameter Synthesis

Computing Rational Functions [Daws, 2004]

Pr (s0 ⊧◇(1 or 3)) ⩽ 1/3 iff p⋅q⋅ 1−p
1−p⋅q

+ p2⋅ 1−q
1−p⋅q

⩽ 1/3

This may yield large high-degree rational functions.
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Parameter Synthesis

Resulting Rational Functions
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Parameter Synthesis

Zooming In
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Parameter Synthesis

Zooming In

41 states, 138 transitions, 2 parameters:

numerator = 48 terms, denominator = product of 48 (linear) polynomials
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Parameter Synthesis

Zooming In

41 states, 138 transitions, 2 parameters:

numerator = 48 terms, denominator = product of 48 (linear) polynomials

⇒ Use bisimulation, SCC-decomposition and efficient gcd-computation
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Parameter Synthesis

Hierarchical SCC Decomposition [Jansen et al., 2014]
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Parameter Synthesis

Hierarchical SCC Decomposition [Jansen et al., 2014]
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Parameter Synthesis

Hierarchical SCC Decomposition [Jansen et al., 2014]
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Parameter Synthesis

Hierarchical SCC Decomposition [Jansen et al., 2014]
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Parameter Synthesis

Hierarchical SCC Decomposition [Jansen et al., 2014]
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Parameter Synthesis

Hierarchical SCC Decomposition [Jansen et al., 2014]
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Parameter Synthesis

Hierarchical SCC Decomposition [Jansen et al., 2014]
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Parameter Synthesis

Hierarchical SCC Decomposition [Jansen et al., 2014]
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Parameter Synthesis

Hierarchical SCC Decomposition [Jansen et al., 2014]
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Parameter Synthesis

Hierarchical SCC Decomposition [Jansen et al., 2014]

S

5

9

1

1

−0.2872p−0.52q+0.3192pq+0.52
−0.6712p−0.744q+0.5432pq+0.904

−0.384p−0.224q+0.224pq+0.384
−0.6712p−0.744q+0.5432pq+0.904
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Parameter Synthesis

Hierarchical SCC Decomposition [Jansen et al., 2014]

S

5

9

1

1

−0.2872p−0.52q+0.3192pq+0.52
−0.6712p−0.744q+0.5432pq+0.904

−0.384p−0.224q+0.224pq+0.384
−0.6712p−0.744q+0.5432pq+0.904

For which (combinations of) values for p and q is
the probability of reaching5smaller than c ∈ [0, 1]?

⇒ Evaluate rational function.
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Parameter Synthesis

Exploiting SMT

Goal: partition parameter space in regions R that are either safe or unsafe

Idea: generate region candidates R and ask SMT solver5 for counterexample

5Over non-linear real arithmetic using Z3 or SMT-RAT.
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Parameter Synthesis

Exploiting SMT

Goal: partition parameter space in regions R that are either safe or unsafe

Idea: generate region candidates R and ask SMT solver5 for counterexample

5Over non-linear real arithmetic using Z3 or SMT-RAT.
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Parameter Synthesis

CEGAR-Like Parameter Synthesis
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Parameter Synthesis

CEGAR-Like Parameter Synthesis

For which 1/10 ⩽ p ⩽ 9/10 and 2/5 ⩽ q ⩽ 3/5 does Pr(◇2) ⩾ 3/20 hold?
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Parameter Synthesis

CEGAR-Like Parameter Synthesis

For which 1/10 ⩽ p ⩽ 9/10 and 2/5 ⩽ q ⩽ 3/5 does Pr(◇2) ⩾ 3/20 hold?
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Parameter Synthesis

CEGAR-Like Parameter Synthesis

For which 1/10 ⩽ p ⩽ 9/10 and 2/5 ⩽ q ⩽ 3/5 does Pr(◇2) ⩾ 3/20 hold?
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Parameter Synthesis

CEGAR-Like Parameter Synthesis

For which 1/10 ⩽ p ⩽ 9/10 and 2/5 ⩽ q ⩽ 3/5 does Pr(◇2) ⩾ 3/20 hold?
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Parameter Synthesis

Experimental Results [Dehnert et al., 2015]

competitors

▸ PARAM [Hahn et al., 2010]

▸ PRISM [Parker et al., 2011]

models

▸ Bounded retransmission protocol

▸ NAND multiplexing

▸ Zeroconf, Crowds protocol

▸ 104 to 7.5 ⋅ 106 states

experiments:

▸ best set-up for each tool

▸ log-scale x- and y-axis

runner-up in the CAV 2015 artefact evaluation
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Parameter Synthesis

Experimental Results [Dehnert et al., 2015]

competitors

▸ PARAM [Hahn et al., 2010]

▸ PRISM [Parker et al., 2011]

▸ prototype [Baier et al., 2014]

models

▸ Bounded retransmission protocol

▸ NAND multiplexing

▸ Zeroconf, Crowds protocol

▸ 104 to 7.5 ⋅ 106 states

experiments:

▸ best set-up for each tool

▸ log-scale x- and y-axis

runner-up in the CAV 2015 artefact evaluation
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Parameter Synthesis

Parameter Synthesis using SMT

Pros:

▸ Exact results: rational function is an exact symbolic object

▸ Drastic improvements over existing tools PARAM and PRISM

▸ User-friendly representation
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Parameter Synthesis

Parameter Synthesis using SMT

Pros:

▸ Exact results: rational function is an exact symbolic object

▸ Drastic improvements over existing tools PARAM and PRISM

▸ User-friendly representation

Cons:

▸ Rational function requires many gcd-computations > 4 parameters?

▸ SMT performance unpredictable heuristics hard
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Parameter Synthesis

Parameter Synthesis using SMT

Pros:

▸ Exact results: rational function is an exact symbolic object

▸ Drastic improvements over existing tools PARAM and PRISM

▸ User-friendly representation

Cons:

▸ Rational function requires many gcd-computations > 4 parameters?

▸ SMT performance unpredictable heuristics hard

Can we do better by sacrificing exactness? Yes.
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Parameter Synthesis

Approximate Parameter Synthesis [Quatmann et al,, 2016]

Let transition probabilities be linear in each variable.

That is, transition functions f are multi-affine multivariate polynomials of form:

f =∑ ai ⋅ (∏
x∈V

x) with ai ∈ Q

Examples: 3x ⋅y + 4y ⋅z , 1 − x , x ⋅y ⋅z etc.
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Parameter Synthesis

Approximate Parameter Synthesis [Quatmann et al,, 2016]
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Parameter Synthesis

Approximate Parameter Synthesis [Quatmann et al,, 2016]

Two-phase approach: first remove dependencies, then substitute extremal values
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Parameter Synthesis

Approximate Parameter Synthesis [Quatmann et al,, 2016]

Two-phase approach: first remove dependencies, then substitute extremal values

Also applicable to parametric MDPs.
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Parameter Synthesis

Phase 1: Relaxation

Parameter dependencies are removed; Pr(◇2) = (1 − z) ⋅ 1−q

1−p⋅q

⇒ each state is equipped with its own parameter
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Parameter Synthesis

Phase 1: Relaxation

Correctness:

▸ Relaxed regions contain more valuations than original regions

⇒ Relaxation yields over-approximations

⇒ Relaxation preserves upper-bounds on reachability probs
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Parameter Synthesis

Phase 1: Relaxation

Correctness:

▸ Relaxed regions contain more valuations than original regions

⇒ Relaxation yields over-approximations

⇒ Relaxation preserves upper-bounds on reachability probs

Complexity of parameter synthesis :

▸ Relaxation increases the number of parameters

▸ Extremal values of the state parameters attain maximal probabilities

⇒ Valuations for maximal probabilities are easier to find
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Parameter Synthesis

Phase 2: Substitution

Local parameters per state ⇒ extremal values at states suffice
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Parameter Synthesis

Phase 2: Substitution

Local parameters per state ⇒ extremal values at states suffice
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Parameter Synthesis

Phase 2: Substitution

This results in a Markov decision process.

Its extremal reachability probabilities provide bounds for parametric MC.
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Parameter Synthesis

Parameter Synthesis

Until ≈ 95% of the parameter space is covered
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Parameter Synthesis

Parameter Synthesis

Until 95% of the parameter space is covered
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Parameter Synthesis

Coverage

ϕ n # states # trans % p t safe unsafe neither unkn

p
M

C

brp E 2 20 744 27 651 48% 51 14.9% 79.2% 5.8% 0.2%

E 4 20 744 27 651 48% 71 7.5% 51.0% 40.6% 0.8%

crowds P 2 104 512 246 082 19% 44 54.4% 41.1% 4.2% 0.3%

nand P 2 35 112 52 647 47% 21 21.4% 68.5% 6.9% 3.2%

p
M

D
P

brp P 2 40 721 55 143 50% 153 6.6% 90.4% 3.0% 0.0%

cons P 4 22 656 75 232 41% 357 2.6% 87.0% 10.4% 0.0%

sav P 4 379 1 127 50% 2 44.0% 15.4% 35.4% 5.3%

zconf P 2 88 858 203 550 40% 186 16.6% 77.3% 5.6% 0.5%

Parameter space R = [10−5,1−10−5]n until 95% coverage for n parameters

for 625 equally-sized regions without region refinement

single core, 2.0 GHz, 30GB RAM, TO = one hour
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Parameter Synthesis

Parametric Markov Chain Benchmarks

PLA PRISM

benchmark instance ϕ #pars #states #trans #regions direct bisim best

brp

(256,5) P 2 19 720 26 627 37 6 14 TO
(4096,5) P 2 315 400 425 987 13 233 TO TO
(256,5) E 2 20 744 27 651 195 8 15 TO
(4096,5) E 2 331 784 442 371 195 502 417 TO
(16,5) E 4 1 304 1 731 1 251 220 2 764 1 597 TO
(32,5) E 4 2 600 3 459 1 031 893 TO 2 722 TO
(256,5) E 4 20 744 27 651 – TO TO TO

crowds
(10,5) P 2 104 512 246 082 123 17 6 2038
(15,7) P 2 8 364 409 25 108 729 116 1 880 518 TO
(20,7) P 2 45 421 597 164 432 797 119 TO 2 935 TO

nand
(10,5) P 2 35 112 52 647 469 22 30 TO
(25,5) P 2 865 592 1 347 047 360 735 2 061 TO

coverage of 95%; refinement into four equally-sized regions

SMT approach needs >one hour on all instances.
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Parameter Synthesis

Parametric MDP Benchmarks

PLA PRISM

benchmark instance ϕ #pars #states #trans #regions direct bisim best

brp
(256,5) P 2 40 721 55 143 37 35 3 359 TO
(4096,5) P 2 647 441 876 903 13 3 424 TO TO

consensus

(2,2) P 2 272 492 119 < 1 < 1 31
(2,32) P 2 4 112 7 692 108 113 141 TO
(4,2) P 4 22 656 75 232 6 125 1 866 2 022 TO
(4,4) P 4 43 136 144 352 – TO TO TO

sav

(6,2,2) P 2 379 1 127 162 < 1 < 1 TO
(100,10,10) P 2 1 307 395 6 474 535 37 1 612 TO TO

(6,2,2) P 4 379 1 127 621 175 944 917 TO
(10,3,3) P 4 1 850 6 561 TO TO TO

zeroconf
(2) P 2 88 858 203 550 186 86 1 295 TO
(5) P 2 494 930 1 133 781 403 2 400 TO TO

coverage of 95%
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Parameter Synthesis

Summary So Far

SMT-based approach:

▸ Exact

▸ Requires rational functions

▸ Fickle SMT performance

▸ ≈ 106 states, 2 parameters

▸ Restricted to Markov chains

▸ CEGAR-like refinement
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Parameter Synthesis

Summary So Far

SMT-based approach:

▸ Exact

▸ Requires rational functions

▸ Fickle SMT performance

▸ ≈ 106 states, 2 parameters

▸ Restricted to Markov chains

▸ CEGAR-like refinement

Parameter lifting approach:

▸ Approximative

▸ Off-the-shelf model checking

▸ No SMT, no rational functions

▸ ≈ 107 states, 4–5 parameters

▸ Applicable to MDPs and games

▸ CEGAR-like refinement
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Parameter Synthesis

Multiple Objectives
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Parameter Synthesis

Multiple Objectives

Inputs:

1. a (finite) parametric MDP M over V = {x1, . . . , xn }
with signomial parameter functions c ⋅ xa1

1 ⋅ . . . ⋅ xann for c ∈ R

2. multiple objectives ϕ1, . . . , ϕm (reachability, expected reward)

3. objective function f over V :
N

∑
k=1

ck ⋅ xa1k
1 ⋅ . . . ⋅ xankn for ck ∈ R
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Parameter Synthesis

Multiple Objectives

Inputs:

1. a (finite) parametric MDP M over V = {x1, . . . , xn }
with signomial parameter functions c ⋅ xa1

1 ⋅ . . . ⋅ xann for c ∈ R

2. multiple objectives ϕ1, . . . , ϕm (reachability, expected reward)

3. objective function f over V :
N

∑
k=1

ck ⋅ xa1k
1 ⋅ . . . ⋅ xankn for ck ∈ R

Output:

A (randomised) policy σ and valuation u such that:

Mσ[u] ⊧ ϕ1 ∧ . . . ∧ϕm´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“feasibility”

and the objective f is minimised´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“optimality”
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Parameter Synthesis

Multiple Objectives

Inputs:

1. a (finite) parametric MDP M over V = {x1, . . . , xn }
with signomial parameter functions c ⋅ xa1

1 ⋅ . . . ⋅ xann for c ∈ R

2. multiple objectives ϕ1, . . . , ϕm (reachability, expected reward)

3. objective function f over V :
N

∑
k=1

ck ⋅ xa1k
1 ⋅ . . . ⋅ xankn for ck ∈ R

Output:

A (randomised) policy σ and valuation u such that:

Mσ[u] ⊧ ϕ1 ∧ . . . ∧ϕm´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“feasibility”

and the objective f is minimised´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“optimality”

multi-objective MDP: use LP [Etessami et al., 2008]

multi-objective parametric MDP: use special type NLP [Cubuktepe et al., 2017]
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Parameter Synthesis

NLP for Two Objectives

Objectives: minimise f , reach T with probability ⩽ p, expected cost to reach G ⩽ c

Subject to: psI ⩽ p reachability objective

csI ⩽ c expected reward objective
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t∈S

P(s, α, t) = 1 probabilistic choice

∀s, t, α ∶ 0 ⩽ P(s, α, t) ⩽ 1

∀s ∈ T ∶ ps = 1 reach prob of T

∀s /∈ T ∶ ps = ∑
α∈Act(s)

σ
s,α
⋅∑
t∈S

P(s, α, t)⋅pt transition probabilities
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Parameter Synthesis

NLP for Two Objectives

Objectives: minimise f , reach T with probability ⩽ p, expected cost to reach G ⩽ c

Subject to: psI ⩽ p reachability objective

csI ⩽ c expected reward objective

∀s ∶ ∑
α∈Act(s)

σ
s,α
= 1 randomised scheduler

∀s, α ∶ 0 ⩽ σ
s,α
⩽ 1

∀s, α ∶ ∑
t∈S

P(s, α, t) = 1 probabilistic choice

∀s, t, α ∶ 0 ⩽ P(s, α, t) ⩽ 1

∀s ∈ T ∶ ps = 1 reach prob of T

∀s /∈ T ∶ ps = ∑
α∈Act(s)

σ
s,α
⋅∑
t∈S

P(s, α, t)⋅pt transition probabilities

∀s ∈ G ∶ cs = 0 expected cost of G

∀s /∈ G ∶ cs = ∑
α∈Act(s)

σ
s,α
⋅ (c(s, α) +∑

t∈S

P(s, α, t)⋅ct) expected costs

Theorem: This NLP is sound and complete. But solving NLPs is exponential.
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Parameter Synthesis

Can We Do Better?

Yes.

1. Get a feasible solution in polynomial time6. How? Geometric programming.

2. Get local optimum. How? Sequential convex programming.

Solutions are approximations that can be arbitrarily close.

6Approximation of arbitrarily precise results by interior point methods with barriers
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Parameter Synthesis

Geometric Programming

Objective: minimise f ∶∶
N

∑
k=1

ck ⋅ xa1k
1 ⋅ . . . ⋅ xankn for ck ∈ R⩾0

Subject to:
∀i ∈ [1..m] ∶ gi ⩽ 1 posynomial gi

∀j ∈ [1..ℓ] ∶ hj = 1 monomial hj

Division transformation: f ⩽ h if and only if f
h
⩽ 1

Relaxation: f = h implies f ⩽ h if and only if f
h
⩽ 1
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Parameter Synthesis

Convexification
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Parameter Synthesis

Lifting
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Parameter Synthesis

GP for Two Objectives

Objectives: reach T with probability ⩽ p, expected cost to reach G ⩽ c

Subject to: psI
p
⩽ 1 reachability

csI
c
⩽ 1 expected reward
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Parameter Synthesis

GP for Two Objectives

Objectives: reach T with probability ⩽ p, expected cost to reach G ⩽ c

Subject to: psI
p
⩽ 1 reachability

csI
c
⩽ 1 expected reward

∀s ∶ ∑
α∈Act(s)

σ
s,α
⩽ 1 randomised scheduler

∀s, α ∶ σ
s,α
⩽ 1

∀s, α ∶ ∑
t∈S

P(s, α, t) ⩽ 1 probabilistic choice

∀s, t, α ∶ P(s, α, t) ⩽ 1

∀s ∈ T ∶ ps = 1 reach prob of T

∀s /∈ T ∶ ∑α σ
s,α
⋅∑t∈S P(s, α, t)⋅pt

ps
⩽ 1 transition probabilities

∀s /∈ G ∶ ∑α σ
s,α
⋅ (c(s, α) +∑t∈S P(s, α, t)⋅ct)

cs
⩽ 1 expected costs
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Parameter Synthesis

Correctness

Use the objective function F now7

Minimise ∑
p∈V

1

p
+ ∑

p∈L

1

p
+ ∑

s,α

1

σs,α

yields that all variables p, p and σs,α are maximised.

Theorem: The GP with objective function F yields a feasible solution.

Solving this GP can be done in polynomial time.

7Note: the original objective function f is dropped.
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Parameter Synthesis

Experimental Results
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Parameter Synthesis

Experimental Results
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Parameter Synthesis

Epilogue

SMT-based approach:

▸ Exact

▸ Requires rational functions

▸ Fickle SMT performance

▸ ≈ 106 states, 2 parameters

▸ Restricted to Markov chains

▸ CEGAR-like refinement
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SMT-based approach:

▸ Exact

▸ Requires rational functions

▸ Fickle SMT performance

▸ ≈ 106 states, 2 parameters

▸ Restricted to Markov chains

▸ CEGAR-like refinement

Parameter lifting approach:

▸ Approximative

▸ Off-the-shelf model checking

▸ No SMT, no rational functions

▸ ≈ 107 states, 4–5 parameters

▸ Applicable to MDPs and games

▸ CEGAR-like refinement
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Epilogue

SMT-based approach:

▸ Exact

▸ Requires rational functions

▸ Fickle SMT performance

▸ ≈ 106 states, 2 parameters

▸ Restricted to Markov chains

▸ CEGAR-like refinement

Geometric programming approach:

▸ Numerical approximation

▸ Multiple objectives

▸ ≈ 105 states, 10 parameters

▸ Applicable to MDPs

▸ Possibility of richer objectives

Significant progress in the last couple of years.

More info: QEST’14, CAV’15, ATVA’16, TACAS’17 and

http://moves.rwth-aachen.de/research/tools/prophesy/
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Epilogue

Conclusion

Probabilistic Model Checking . . .

▸ . . . . . . is a mature automated technique

▸ . . . . . . focuses on quantitative measures

▸ . . . . . . has a broad range of applications

▸ . . . . . . such as performance analysis

▸ . . . . . . and reliability engineering

more information: http://www.stormchecker.org
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▸ . . . . . . is a mature automated technique

▸ . . . . . . focuses on quantitative measures

▸ . . . . . . has a broad range of applications

▸ . . . . . . such as performance analysis

▸ . . . . . . and reliability engineering

Current Research

▸ tight game-based abstractions

▸ parameter synthesis

Big Thanks! To all my co-authors and co-workers

more information: http://www.stormchecker.org

Joost-Pieter Katoen Performance+Reliability by Model Checking 130/131



Epilogue

Further reading

▸ C. Baier and JPK.

Principles of Model Checking. MIT Press, 2008.

▸ JPK.

The probabilistic model checking landscape. IEEE LICS, 2016.

▸ A. Abate, JPK, J. Lygeros, M. Prandini
Approximate model checking of stochastic hybrid systems.

Eur. J. on Control, 2010.

▸ C. Baier, B. Haverkort, H. Hermanns, JPK.

Performance analysis and model checking join forces. Comm. of the ACM, 2010.

▸ M. Volk, S. Junges, JPK.
Fast dynamic fault tree analysis by model checking.

IEEE Trans. on Industrial Informatics, 2017.

▸ I. Tkachev, A. Mereacre, JPK, A. Abate.
Quantitative model-checking of controlled discrete-time Markov processes.

Information and Computation, 2017.
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