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A (Swiss) Mood Picture

Courtesy of Alcherio Martinoli
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Why Multi-Robot Systems?

 Strength in numbers

* Lots of (potential) applications

* Confluence of technology and algorithms
* Scientifically interesting!
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* Local (distributed)

* Scalable (decentralized)
e Safe and Reactive

* Emergent (but not too much)
Lynch, Distributed Algorithms, 1996.
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Application Domains

Sensor and
communications networks

Biological networks o dinated control
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Application Domains

“There 1s nothing more practical than a good
theory” - James C. Maxwell (Lewin? Pauling?)

“In theory, theory and practice are the same.
In practice, they are not” — Yogi Berra
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1. GRAPH-BASED ABSTRACTIONS
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A True Swarm
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Graphs as Network Abstractions

* A networked sensing and actuation system consists of

— NODES - physical entities with limited resources (computation,
communication, perception, control)

— EDGES - virtual entities that encode the flow of information between
the nodes

e The “right” mathematical object for characterizing such systems at the
network-level is a GRAPH

— Purely combinatorial object (no geometry or dynamics)

— The characteristics of the information flow is abstracted away through
the (possibly weighted and directed) edges
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Graphs as Network Abstractions

« The connection between the combinatorial graphs and the geometry
of the system can for instance be made through geometrically defined
edges.

« Examples of such proximity graphs include disk-graphs, Delaunay
graphs, visibility graphs, and Gabriel graphs[1].

n3

ni

ne
ns

N = {n1,no,n3,n4,n5,n6}
&= {(?’L]_, n2)7 (n27 7’1,3), (’I’L3, 'I’L4), (n27 ’I’L4), (’I’L4, ’I’L5), (’I’L4, ’I’L6), (’I’L5, 77,6)}
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The Basic Setup

o z;(k)= “state” at node i at time k z; (k)
N; (k)= “neighbors” to agent i '/\
Information “available to agent 1

I7(k) =A{z;(k) | 7 € Ni(k)}
or
I7(k) = {zi(k) — z,;(k) | 7 € N;(k)} +— relative info. (sensing)

common ref. frame (comms.)

« Update rule:
i (k + 1) :@azi(k),lz-(k)) —— discrete time
or
&%) :@xi(t),li(t)) «<——— continuous time

How pick the update rule?
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Rendezvous — A Canonical Problem

* (Given a collection of mobile agents who can only measure the relative
displacement of their neighbors (no global coordinates)

/%‘
YT P — This

oy 1s what agent 7 can measure
1

* Problem: Have all the agents meet at the same (unspecified) position

« Ifthere are only two agents, it makes sense to have them drive
towards each other, 1.e.

—y1(x1 — z2)
—yo(xp — 21)

@
1y,

« If 71 = 72 they should meet halfway
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Rendezvous — A Canonical Problem

« If there are more than two agents, they should probably aim towards
the centroid of their neighbors (or something similar)

JEN;

[ N

The “consensus protocol” drives all
states to the same value if the
interaction topology is “rich enough”

\_ )

Tsitsiklis 1988, Bertsekas, Tsitsiklis, 1989. Jadbabaie,
Lin, Morse, 2003. Olfati-Saber, Murray, 2003.
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Rendezvous — A Canonical Problem

Fact [2-4]: If and only if the graph* is
connected, the consensus equation drives
all agents to the same state value

lim CBZ(t) =
t—00

S|
|
Z|
8
<.
~
o
—

*static and undirected graphs
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Pickem, Squires, Egerstedt, 2015
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Algebraic Graph Theory

* To show this, we need some tools...

» Algebraic graph theory provides a bridge between the combinatorial
graph objects and their matrix representations

— Degree matrix:

D = diag(deg(ni),...,deg(ny))
— Adjacency matrix: n; n;
1 if e—o0
O o.w.

— Incidence matrix (directed g{raphs): e; Mi
1 if ©&—0©

A =lag], a5 =

I:[Lij], Lij = 9 —1 if 73_1».
0 ow.

— Graph Laplacian:
E=D—A=TT"
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The Consensus Equation

* One reason why the graph Laplacian is so important is through the
already seen “consensus equation”

w'i:— Z (wi—mj), ] = 1,...,N
JEN;
or equivalently (W.L.O.G. scalar agents)
; = —deg(n;)a; + X511 ajjz; ,
T = ==L
B = {xl xo - CUN}

e This is an autonomous LTI system whose stability properties depend
purely on the spectral properties of the Laplacian.
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Graph Laplacians: Useful Properties

— It 1s orientation independent
— It is symmetric and positive semi-definite

— If the graph is connected then

eig(L) = {M,.. AN With 0= X1 <X <--- < Ay
eigv(L) ={v1,...,vN}, with null(L) = span{r1} = span{1}
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Stability: Basics

» The stability properties (what happens as time goes to infinity?) of a
linear, time-invariant system is completely determined by the
eigenvalues of the system matrix

t=Axr (z=—-Lx)
« FEigenvalues A\(A) = A\q,..., \,

« Asymptotic stability: Re(\;) <0, i =1,...,n = lim z(¢t) =0

t— o0

15 . r . . . 0.6

04t
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o5t
02t
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Stability: Basics

 Unstable: 3¢ s.t. Re(\;) >0 = Jz(0) s.t. lim ||x(t)|| = o0

t— o0

15 . . . . . 200

1k 4 150 F

o5t 1 100+

ok 4 50+

05+ 4 0

sk 4 -850 F

45 . . s . s -100
a5 El 05 0 05 1 15

* (A special case of) Critically stable: |

08F

O=A1>X>...2 A, = .l

0.4F

lim;—,o0 2(t) € null(A)

ok
02F

This is the case for the/v E;ZI

consensus equation

-1 08 06 -04 02 0 02 04 06 08 1
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Static and Undirected Consensus

« If the graph is static and connected, under the consensus equation, the
states will reach null(L)

« Fact (again): o
o
null(L) =span{l}, zenull(L) & z=| . |, aeR
- a -

* So all the agents state values will end up at the same value, 1.e. the
consensus/rendezvous problem is solved!

== S (wi—w;) = Jim a(t) = %ijm) _ %1%(0)

. t—o0
JEN;
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Convergence Rates

» The second smallest eigenvalue of the graph Laplacian 1s really
important!

» Algebraic Connectivity (= 0 if and only if graph is disconnected)
» Fiedler Value (robustness measure)
» Convergence Rate:

l2(t) — 2117 2(0)|| < Ce— >
n

* Punch-line: The more connected the network 1s, the faster it
converges (and the more information needs to be shuffled through the
network)

« Complete graph: Ao = n
 Star graph: Ao =1 66— ¢
« Path graph: A2 < 1

Magnus Egerstedt, 2017 Georgia & Institute for Robotics
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Cheeger’s Inequality

e(S)
min{|S],[5¢}
(measures how many edges need to be

cut to make the two subsets disconnected
as compared to the number of nodes that

are lost)

¢(S) =

isoperimetric number:

#(G) = min 4(S)

(measures the robustness of the graph)

P(G)?
2A(G)

¢(G) > Ao 2>

Magnus Egerstedt, 2017 Georgia & Institute for Robotics
and Intelligent Machines

Tech

=t




Summary I

* (QGraphs are natural abstractions (combinatorics instead of geometry)
* Consensus problem (and equation)
» Static Graphs:
* Undirected: Average consensus iff G is connected
* Need richer network models and more interesting tasks!
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2. FORMATION CONTROL
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Formation Control v.1

« Being able to reach consensus goes beyond solving the rendezvous

problem.
« Formation control:
5131,...,..?EN yl?"'2yN
agent positions target positions

« But, formation achieved if the agents are in any translated version of
the targets, i.¢e.,

x; =vy; + 7, Vi, for some 7
« Enter the consensus equation [5]:

ei = T; — Yi = > (@ —25)— (@ — u;)]
€i = — Z(ei — ;) TN

FEN; ri(00) =y; + 1, Vi
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Formation Control v.1
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Beyond Static and Undirected Consensus

» So far, the consensus equation will drive the node states to the same
value if the graph is static and connected.

* But, this is clearly not the case for mobile agents in general:
— Edges = communication links
« Random failures
* Dependence on the position (shadowing,...)
* Interference

 Bandwidth issues

: °
— Edges = sensing NN \
» Range-limited sensors N /.
* Occlusions N ' ®

* Weirdly shaped sensing regions

Magnus Egerstedt, 2017 Georgia & Institute for Robotics
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Directed Graphs

* Instead of connectivity, we need directed notions:

— Strong connectivity = there exists a directed path between any two
nodes

— Weak connectivity = the disoriented graph is connected

Strongly connected Weakly connected

e Directed consensus:

Magnus Egerstedt, 2017 Georgia & Institute for Robotics
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Directed Consensus

* Undirected case: Graph 1s connected = sufficient information 1s
flowing through the network

* Clearly, in the directed case, if the graph is strongly connected, we
have the same result

* Theorem: If G 1s strongly connected, the consensus equation achieves

lim (x; —x;) =0, Vi, j

t— 00

* This is an unnecessarily strong condition! Unfortunately, weak
connectivity is too weak.
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Spanning, Outbranching Trees

* Consider the following structure

N\

* Seems like all agents should end up at the root node

 Theorem [2]: Consensus in a static and directed network is achieved if
and only if G contains a spanning, outbranching tree.

Magnus Egerstedt, 2017 Georgia & Institute for Robotics
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Where Do the Agents End Up?

Recall: Undirected case

N
_ 1 .
j=1
 How show that?

* The centroid 1s invariant under the consensus equation

N
. 1
xzﬁx S:(:Uj—xi):O
i=1 jEN;
* And since the agents end up at the same location, they must end up at
the static centroid (average consensus).
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} Where Do the Agents End Up?

When is the centroid invariant in the directed case?
¢'L=0, w=q¢'z = w=q¢'i=—¢'Lz=0

w is invariant under the consensus equation

The centroid 1s given by 1
r=—1

N
1L =0

Ty

which thus 1s invariant if

Def: G 1s balanced if
deg" (i) = deg®"*(i), Vie V < 1'L=0

Theorem [2]: If G 1s balanced and consensus is achieved then average
consensus 1s achieved!

Magnus Egerstedt, 2017 Georgia & Institute for Robotics
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Dynamic Graphs

* In most cases, edges correspond to available sensor or communication
data, 1.e., the edge set is time varying

n3

ni

Ty no

ne
ns

*  We now have a switched system and spectral properties do not help
for establishing stability

* Need to use Lyapunov functions
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Lyapunov Functions

* (Given a nonlinear system

&= f(x)

* Visa(weak) Lyapunov function if
(1) V(x) >0, Vr#0

(i5) V(x) g—‘; () <0, Yz #0 (<0)

* The system is asymptotically stable if and only if there exists a
Lyapunov function

» [LaSalle’s Invariance Principle] If it has a weak Lyapunov function
the system converges asymptotically to the largest set with /=0 s.t. the
derivative of V'1s 0

Magnus Egerstedt, 2017 Georgia & Institute for Robotics
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Switched Systems

Similarly, consider a switched system
= f,(x), o(t)e{l,..., q}

* The system is universally asymptotically stable if it is asymptotically
stable for all switch sequences

* A function V'is a common Lyapunov function if it is a Lyapunov
function to all subsystems

oV
V>0 —f<0,1=1,...,q
Ox

* Theorem [9]: Universal stability if and only if there exists a common
Lyapunov function. (Similar for LaSalle.)

Magnus Egerstedt, 2017 Georgia & Institute for Robotics
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Switched Networked Systems

* Switched consensus equation

r=—L,x
* Consider the following candidate Lyapunov function

1 .
Viz) = §xTx, Vizg)=ald = -2 Loz

* This is a common (weak) Lyapunov function as long as G i1s
connected for all times

* Using LaSalle’s theorem, we know that in this case, it ends up in the
null-space of the Laplacians

Magnus Egerstedt, 2017 Georgia & Institute for Robotics
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Switched (Undirected) Consensus

Theorem [2-4]: As long as the graph
stays connected, the consensus equation
drives all agents to the same state value

1 N
lim z5(t) = 7 = S 2;(0)
j=1

t—00
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Collisions?
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Adding Weights

o/ e O

too far away too close just right
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Adding Weights
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Selecting the Weights

Graph Theoretic

~

o

e 0

i == > wi (e — ] (@ — )

JEN;

Mesbahi, Egerstedt 2010

* Formation Control * Flocking and Swarming
« Connectivity Maintenance ¢ Patrolling
* Coverage Control e Pursuit/Evasion

Mesbahi, Egerstedt 2010. Guttal, Couzin 2011. Ji, Egerstedt, 2007. Bishop, Deghat, Anderson 2014. Zavlanos, Pappas 2008.
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Weights Through Edge-Tensions

* How select appropriate weights? N N
* Letan edge tension be given by £ — Z Z ai’jgi,j(nxi —x; H)
i=1 j=1
Eij g &ij

A dij
Connectivity Maintenance Formation Control

Mesbahi, Egerstedt 2010. Guttal, Couzin 2011. Ji, Egerstedt, 2007. Bishop, Deghat, Anderson 2014. Zavlanos, Pappas 2008.
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Weights Through Edge-Tensions

* How select appropriate weights? N N
« Letan edge tension be givenby £ = Z Z a; ;& i(||xs — z4||)
i=1 j=1
* We get
a;;j = wij(lzs — z5) (2 — z5)
* (Gradient descent
0&
Ti= "5 -~ =7 Z wij ([ — z5])) (2 — ;)
L
JEN;
2
¢ (9_5 L 8_8 Energy is non-increasing!
dt ~ Or L= Or (weak Lyapunov function)

Mesbahi, Egerstedt 2010. Guttal, Couzin 2011. Ji, Egerstedt, 2007. Bishop, Deghat, Anderson 2014. Zavlanos, Pappas 2008.

Magnus Egerstedt, 2017 Georgia & Institute for Robotics

Tech |/and Intelligent Machines

=t




Examples

Standard, linear consensus!

1
Eij = Fllwi —z;* = wi; =1

Mesbahi, Egerstedt 2010. Guttal, Couzin 2011. Ji, Egerstedt, 2007. Bishop, Deghat, Anderson 2014. Zavlanos, Pappas 2008.
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Examples

Unit vector (biology)

1
Eij = lzi — x5l = wij = Iz — 2|
i j
Ci?i:_z S
5 i =]

Mesbahi, Egerstedt 2010. Guttal, Couzin 2011. Ji, Egerstedt, 2007. Bishop, Deghat, Anderson 2014. Zavlanos, Pappas 2008.
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Examples

Formation control v.2

1
Eij = 5 (llwi —wjll = dig)” = wi; =

|z — 5] — dy;

i — 5

Xi — Xy —dij i — Ty
3 (l | )( )

T = —
7’ @i — 2]

JEN;

Mesbahi, Egerstedt 2010. Guttal, Couzin 2011. Ji, Egerstedt, 2007. Bishop, Deghat, Anderson 2014. Zavlanos, Pappas 2008.
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Examples

Connectivity maintenance
24 — ||zi — x|
(A = [z —z;])2

. 2\ — Ly — Ty Li — Ty
=3 ( | D( )

|z — ]|

8i': = Wij =

A — ||z — x|

(& =z = 2,2

JEN;

Mesbahi, Egerstedt 2010. Guttal, Couzin 2011. Ji, Egerstedt, 2007. Bishop, Deghat, Anderson 2014. Zavlanos, Pappas 2008.
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Ji, Azuma, Egerstedt, 2006. MacDonald, Egerstedt, 2011
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Spatio-Temporal Formations

Chopra, Egerstedt, 2013.
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And In the Air...

Wang, Ames, Egerstedt, 2016
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Coming to a Toy Store Near You...
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Formation Control v.3 ~ Coverage Control

Objective: Deploy sensor nodes in a distributed manner such that an

area of interest is covered

bnsoht ork Co

o]O)
OO
OO
@@

Idea: Divide the responsibility between nodes into regions

@ OO O

Georgia & Institute for Robotics
and Intelligent Machines
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Coverage Control

e The coverage cost:
1 N
J(z, W) == i —qll*d
(2, ) QEQ/QHx al*dg

* Simplify (not optimal):

1 N
fuoz—Ej/‘ e — gl dg
27;:1 Vi(x)

where the Voronoi regions are given by

Vi(r) ={q € D | |lzi —ql| < llz; — qll}

Magnus Egerstedt, 2017 Georgia & Institute for Robotics
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Deployment

» Using a gradient descent (cost = weak Lyapunov function)

Ty = —/ (i — q)dg = —/ dq(:vz- — pi(:c)>
V;(x) Vi (x)

* We only care about directions so this can be re-written as Lloyd’s
Algorithm [1]

z; = pi(z) — @

o

center of mass of Voronoi cell i

Magnus Egerstedt, 2017 Georgia & Institute for Robotics
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Deployment

* Lloyd’s Algorithm:
— Converges to a local minimum to the simplified cost
— Converges to a Central Voronoi Tessellation

Courtesy of J. Cortes
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Summary Il

e Static Graphs:

* Undirected: Average consensus iff G 1s connected

* Directed: Consensus iff G contains a spanning, outbranching
tree

* Directed: Average consensus if consensus and G 1s balanced
* Switching Graphs:
* Undirected: Average consensus if G 1s connected for all times

* Directed: Consensus if G contains a spanning, outbranching
tree for all times

* Directed: Average consensus if consensus and G is balanced
for all times

* Additional objectives is achieved by adding weights (edge-tension
energies as weak Lyapunov functions)

Magnus Egerstedt, 2017 Georgia & Institute for Robotics
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3. INTERACTING WITH NETWORKS
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Again: Why Swarming Robots?

e Strength in numbers
* Lots of (potential) applications
* Convergence of technology and algorithms

* Scientifically i

Magnus Egerstedt, 2017 Georgia ﬁ Institute for Robotics
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de la Croix, Egerstedt, 2014.
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Results

e Performance “Error”, Difficulty, Workload

L3@ Scoring (p<0.0000001)
0.7

o
™
1

1=
on
!

o
oo
1

=
)
1

Score (LSO

=
N
1

o
-
1

o
|

1T 2 3 4 5 8 7 & 9 10 11 12 1Z 14
Task [#)

de la Croix, Egerstedt, 2014.
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Results

» Performance “Error”, Difficulty, Workload

4 N

« PEOPLE ARE REALLY BAD AT CONTROLLING
SWARMS OF ROBOTS!

\ /

de la Croix, Egerstedt, 2014.
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A (Welsh) Mood Picture
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Duck Tales
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Lagrangian Fluid Dynamics

control surface (CS)

Lagrangian Swarms:

* Formation Control

* Flocking, Rendezvous, and Swarming
* Coverage Control

* Boundary Protection and Containment

Magnus Egerstedt, 2017 Georgia & Institute for Robotics
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Eulerian Fluid Dynamics

Eulerian Swarms?
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Manipulating the Mission/Environment?

* Key idea: Human operator specifies areas of interest and the
robots respond

10 =3 [ ealolgds

specification

Gradient descent (Lloyd’s algorithm)

z; = pi(z) — ;

center of mass of Voronoi cell i

Achieves a CVT:
zi(t) — pi(x(t)) — 0

Tech

=t
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Time-Varying Density Functions

Need time-varying human inputs ¢(q, )
d . dp\ dp
dt(x_p(x))_0:>x_< aaz) ot

* Problem I: First need to getto a CVT sparse {%} = sparse{G petaunay }
* Problem 2: Inverse not always defined *

 Problem 3: Not distributed sparse { (I — %) } #+ sparse{G Delaunay }

* Problem 4: Messy... \

() 20 ()
o Jov,, 24 ||a:3—azz||d‘1 Jov.,, ¢||wg—xz||dqfv bq')dg

(9:65-6) fvi Pdq (fvz gbdq)

_/

Tech
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Time-Varying Density Functions

d B - dp\ " 9p
a(az—p(x))-@#az-( —%) "

e Problem 1: First need to getto a CVT

—1 2

* Problem 2: Inverse not always defined |1 — 9p = I+ 9y (9 4+
T oz Ox ox

* Problem 3: Not distributed

N

* Solution: Add a Lloyd term and use a truncated Neumann Series:

o (1 22) (2 4 - o)

i(t) — pi(x(t)) — 07

Lee, Diaz-Mercado, Egerstedt, TRO, 2015

Magnus Egerstedt, 2017

Georgia & Institute for Robotics

Tech |/and Intelligent Machines

=t



Example 1: Precision Agriculture

Swarms
ar )

Actually
Help Farms

Li, Diaz-Mercado, Egerstedt, 2015

Tech
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Example 2: The Robotarium
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So Far... [www.robotarium.org]

K. Fathian, N. Gans, M. Spong H. Park, S. Hutchinson

Since Jan. 2016:
115 robots, 21 research groups, 105
student projects
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Tokyo Institute of Technology
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Synchronization
J. Yamauchi, M. Fujita
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Example 2: The Robotarium
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Example 3: Mind Control
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} Eulerian Approached Beyond Density Functions

Kingston, Egerstedt, 2011
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Summary III

* Lagrangian swarms at the level of the individual agents

* FEulerian swarms from the users’ perspective:
— Engage at the level of the team, not at the level of individuals
— (For small team sizes, leader-follower control still works ok)

* Embedded humans (human-swarm interactions) is still a major area of
research!
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To Summarize

formations human-swarm interactions
Open issues:

A

complex dynamics? malicious behaviors? beyond geometry?
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Thank You!
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Thank You!
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