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A (Swiss) Mood Picture 

Courtesy of Alcherio Martinoli 
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Why Multi-Robot Systems? 

•  Strength in numbers 
•  Lots of (potential) applications 
•  Confluence of technology and algorithms 
•  Scientifically interesting! 
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But How? 

•  Local (distributed) 
•  Scalable (decentralized) 
•  Safe and Reactive 
•  Emergent (but not too much) 

Lynch,	Distributed	Algorithms,	1996.	
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Application Domains 

Sensor and 
communications networks Multi-agent robotics 

Coordinated control Biological networks 
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Application Domains 

Multi-agent robotics 
“There is nothing more practical than a good 
theory” - James C. Maxwell (Lewin? Pauling?) 

“In theory, theory and practice are the same. 
In practice, they are not” – Yogi Berra 
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1.  GRAPH-BASED ABSTRACTIONS 
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A True Swarm 

? 
“They look like ants.”  
– Stephen Pratt, Arizona State University  
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Graphs as Network Abstractions 

•  A networked sensing and actuation system consists of  
–  NODES - physical entities with limited resources (computation, 

communication, perception, control) 
–  EDGES - virtual entities that encode the flow of information between 

the nodes 

•  The “right” mathematical object for characterizing such systems at the 
network-level is a GRAPH 
–  Purely combinatorial object (no geometry or dynamics) 
–  The characteristics of the information flow is abstracted away through 

the (possibly weighted and directed) edges 
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Graphs as Network Abstractions 

•  The connection between the combinatorial graphs and the geometry 
of the system can for instance be made through geometrically defined 
edges. 

•  Examples of such proximity graphs include disk-graphs, Delaunay 
graphs, visibility graphs, and Gabriel graphs[1]. 
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The Basic Setup 

•  						=  “state” at node i at time k 
•          = “neighbors” to agent i 

•  Information “available to agent i 

•  Update rule: 

•  How pick the update rule? 

common ref. frame (comms.) 

relative info.  (sensing) 

discrete time 

continuous time 
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Rendezvous – A Canonical Problem 

•  Given a collection of mobile agents who can only measure the relative 
displacement of their neighbors (no global coordinates) 

•  Problem: Have all the agents meet at the same (unspecified) position 

•  If there are only two agents, it makes sense to have them drive 
towards each other, i.e. 

•  If                 they should meet halfway 

This is what agent i can measure 
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Rendezvous – A Canonical Problem 

•  If there are more than two agents, they should probably aim towards 
the centroid of their neighbors (or something similar) 

The “consensus protocol” drives all 
states to the same value if the 
interaction topology is “rich enough”  

Tsitsiklis	1988,	Bertsekas,	Tsitsiklis,	1989.	Jadbabaie,	
Lin,	Morse,	2003.	Olfati-Saber,	Murray,	2003.	
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Rendezvous – A Canonical Problem 

Fact [2-4]: If and only if the graph* is 
connected, the consensus equation drives 
all agents to the same state value 

*static and undirected graphs 
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Consensus/Rendezvous 

Pickem,	Squires,	Egerstedt,	2015	
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Algebraic Graph Theory 

•  To show this, we need some tools… 
•  Algebraic graph theory provides a bridge between the combinatorial 

graph objects and their matrix representations 
–  Degree matrix: 

–  Adjacency matrix: 

–  Incidence matrix (directed graphs): 

–  Graph Laplacian: 
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The Consensus Equation 

•  One reason why the graph Laplacian is so important is through the 
already seen “consensus equation” 

 or equivalently (W.L.O.G. scalar agents) 

•  This is an autonomous LTI system whose stability properties depend 
purely on the spectral properties of the Laplacian. 
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Graph Laplacians: Useful Properties 

–  It is orientation independent 
–  It is symmetric and positive semi-definite 
–  If the graph is connected then 
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Stability: Basics 

•  The stability properties (what happens as time goes to infinity?) of a 
linear, time-invariant system is completely determined by the 
eigenvalues of the system matrix 

•  Eigenvalues 

•  Asymptotic stability: 
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Stability: Basics 

This is the case for the 
consensus equation 

•  Unstable: 

•  (A special case of) Critically stable: 

9i s.t. Re(�i) > 0 ) 9x(0) s.t. lim
t!1

kx(t)k = 1
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Static and Undirected Consensus 

•  If the graph is static and connected, under the consensus equation, the 
states will reach null(L) 

•  Fact (again): 

•  So all the agents state values will end up at the same value, i.e. the 
consensus/rendezvous problem is solved! 
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Convergence Rates 

•  The second smallest eigenvalue of the graph Laplacian is really 
important! 

•  Algebraic Connectivity (= 0 if and only if graph is disconnected) 
•  Fiedler Value (robustness measure) 
•  Convergence Rate: 

•  Punch-line: The more connected the network is, the faster it 
converges (and the more information needs to be shuffled through the 
network) 

•  Complete graph: 
•  Star graph: 
•  Path graph: 

kx(t)� 1

n

11T
x(0)k  Ce

��2t



Magnus Egerstedt, 2017 

Cheeger’s Inequality 

(measures how many edges need to be 
cut to make the two subsets disconnected 
as compared to the number of nodes that 
are lost) 

isoperimetric number: 

(measures the robustness of the graph) 
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Summary I 

•  Graphs are natural abstractions (combinatorics instead of geometry) 
•  Consensus problem (and equation) 
•  Static Graphs: 

•  Undirected: Average consensus iff G is connected 
•  Need richer network models and more interesting tasks! 
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2.  FORMATION CONTROL 
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Formation Control v.1 

•  Being able to reach consensus goes beyond solving the rendezvous 
problem. 

•  Formation control: 

•  But, formation achieved if the agents are in any translated version of 
the targets, i.e., 

•  Enter the consensus equation [5]: 

agent positions target positions 
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Formation Control v.1 
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Beyond Static and Undirected Consensus 

•  So far, the consensus equation will drive the node states to the same 
value if the graph is static and connected. 

•  But, this is clearly not the case for mobile agents in general: 
–  Edges = communication links  

•  Random failures 
•  Dependence on the position (shadowing,…) 
•  Interference 
•  Bandwidth issues 

–  Edges = sensing  
•  Range-limited sensors 
•  Occlusions 
•  Weirdly shaped sensing regions 
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Directed Graphs 

•  Instead of connectivity, we need directed notions: 
–  Strong connectivity = there exists a directed path between any two 

nodes 
–  Weak connectivity = the disoriented graph is connected 

•  Directed consensus: 

Strongly connected Weakly connected 
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Directed Consensus 

•  Undirected case: Graph is connected = sufficient information is 
flowing through the network 

•  Clearly, in the directed case, if the graph is strongly connected, we 
have the same result 

•  Theorem: If G is strongly connected, the consensus equation achieves 

•  This is an unnecessarily strong condition! Unfortunately, weak 
connectivity is too weak. 



Magnus Egerstedt, 2017 

Spanning, Outbranching Trees 

•  Consider the following structure 

•  Seems like all agents should end up at the root node 

•  Theorem [2]: Consensus in a static and directed network is achieved if 
and only if G contains a spanning, outbranching tree. 
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Where Do the Agents End Up? 

•  Recall: Undirected case 

•  How show that? 
•  The centroid is invariant under the consensus equation 

•  And since the agents end up at the same location, they must end up at 
the static centroid (average consensus). 
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Where Do the Agents End Up? 

•  When is the centroid invariant in the directed case? 

•  w is invariant under the consensus equation 
•  The centroid is given by 

 which thus is invariant if 

•  Def: G is balanced if  

•  Theorem [2]: If G is balanced and consensus is achieved then average 
consensus is achieved!  
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Dynamic Graphs 

•  In most cases, edges correspond to available sensor or communication 
data, i.e., the edge set is time varying 

•  We now have a switched system and spectral properties do not help 
for establishing stability 

•  Need to use Lyapunov functions 
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Lyapunov Functions 

•  Given a nonlinear system 

•  V is a (weak) Lyapunov function if 

•  The system is asymptotically stable if and only if there exists a 
Lyapunov function 

•  [LaSalle’s Invariance Principle] If it has a weak Lyapunov function 
the system converges asymptotically to the largest set with f=0 s.t. the 
derivative of V is 0 



Magnus Egerstedt, 2017 

Switched Systems 

•  Similarly, consider a switched system 

•  The system is universally asymptotically stable if it is asymptotically 
stable for all switch sequences 

•  A function V is a common Lyapunov function if it is a Lyapunov 
function to all subsystems 

•  Theorem [9]: Universal stability if and only if there exists a common 
Lyapunov function. (Similar for LaSalle.) 
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Switched Networked Systems 

•  Switched consensus equation 

•  Consider the following candidate Lyapunov function 

•  This is a common (weak) Lyapunov function as long as G is 
connected for all times 

•  Using LaSalle’s theorem, we know that in this case, it ends up in the 
null-space of the Laplacians 



Magnus Egerstedt, 2017 

Switched (Undirected) Consensus 

Theorem [2-4]: As long as the graph 
stays connected, the consensus equation 
drives all agents to the same state value 
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Collisions? 
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Adding Weights 

too far away too close just right 
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Adding Weights 
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Selecting the Weights 

ẋi = �
X

j2Ni

wi,j(kxi � xjk)(xi � xj)

Mesbahi,	Egerstedt	2010.	Guttal,	Couzin	2011.	Ji,	Egerstedt,	2007.	Bishop,	Deghat,	Anderson	2014.	Zavlanos,	Pappas	2008.				

Mesbahi,	Egerstedt	2010		

•  Formation Control 
•  Connectivity Maintenance 
•  Coverage Control 

•  Flocking and Swarming 
•  Patrolling 
•  Pursuit/Evasion 
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Weights Through Edge-Tensions 

•  How select appropriate weights? 
•  Let an edge tension be given by 

Connectivity Maintenance Formation Control 
Mesbahi,	Egerstedt	2010.	Guttal,	Couzin	2011.	Ji,	Egerstedt,	2007.	Bishop,	Deghat,	Anderson	2014.	Zavlanos,	Pappas	2008.				
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Weights Through Edge-Tensions 

•  How select appropriate weights? 
•  Let an edge tension be given by 

•  We get 

•  Gradient descent 

Energy is non-increasing!  
(weak Lyapunov function) 

Mesbahi,	Egerstedt	2010.	Guttal,	Couzin	2011.	Ji,	Egerstedt,	2007.	Bishop,	Deghat,	Anderson	2014.	Zavlanos,	Pappas	2008.				
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Examples 

Standard, linear consensus! 

wij

Eij

Mesbahi,	Egerstedt	2010.	Guttal,	Couzin	2011.	Ji,	Egerstedt,	2007.	Bishop,	Deghat,	Anderson	2014.	Zavlanos,	Pappas	2008.				
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Examples 

Unit vector (biology) 

wij
Eij

Mesbahi,	Egerstedt	2010.	Guttal,	Couzin	2011.	Ji,	Egerstedt,	2007.	Bishop,	Deghat,	Anderson	2014.	Zavlanos,	Pappas	2008.				
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Examples 

Formation control v.2 

Eij

wij

Mesbahi,	Egerstedt	2010.	Guttal,	Couzin	2011.	Ji,	Egerstedt,	2007.	Bishop,	Deghat,	Anderson	2014.	Zavlanos,	Pappas	2008.				
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Examples 

Connectivity maintenance 

Mesbahi,	Egerstedt	2010.	Guttal,	Couzin	2011.	Ji,	Egerstedt,	2007.	Bishop,	Deghat,	Anderson	2014.	Zavlanos,	Pappas	2008.				

wij

Eij
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Weighted Consensus: Formation Control 

Ji,	Azuma,	Egerstedt,	2006.	MacDonald,	Egerstedt,	2011	
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Spatio-Temporal Formations 

Chopra,	Egerstedt,	2013.		
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And In the Air… 

Wang,	Ames,	Egerstedt,	2016	
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Coming to a Toy Store Near You… 
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Formation Control v.3 ~ Coverage Control 

•  Objective: Deploy sensor nodes in a distributed manner such that an 
area of interest is covered  

•  Idea: Divide the responsibility between nodes into regions 
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Coverage Control 

•  The coverage cost: 

•  Simplify (not optimal): 

 where the Voronoi regions are given by 
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Deployment 

•  Using a gradient descent (cost = weak Lyapunov function) 

•  We only care about directions so this can be re-written as Lloyd’s 
Algorithm [1] 

center of mass of Voronoi cell i 

ẋi = � @Ĵ

@xi
) d

dt

Ĵ = �

�����
@Ĵ

@x

�����

2

ẋ

i

= �
Z

Vi(x)
(x

i

� q)dq = �
Z

Vi(x)
dq

⇣
x

i

� ⇢

i

(x)
⌘
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Deployment 

•  Lloyd’s Algorithm: 
–  Converges to a local minimum to the simplified cost 
–  Converges to a Central Voronoi Tessellation  

Courtesy	of	J.	Cortes	
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Summary II 

•  Static Graphs: 
•  Undirected: Average consensus iff G is connected 
•  Directed: Consensus iff G contains a spanning, outbranching 

tree 
•  Directed: Average consensus if consensus and G is balanced 

•  Switching Graphs: 
•  Undirected: Average consensus if G is connected for all times 
•  Directed: Consensus if G contains a spanning, outbranching 

tree for all times 
•  Directed: Average consensus if consensus and G is balanced 

for all times 
•  Additional objectives is achieved by adding weights (edge-tension 

energies as weak Lyapunov functions) 
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3.  INTERACTING WITH NETWORKS
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Again: Why Swarming Robots? 

•  Strength in numbers 
•  Lots of (potential) applications  
•  Convergence of technology and algorithms 
•  Scientifically interesting! 

People will be 
part of the mix! 
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User Study 

de	la	Croix,	Egerstedt,	2014.		
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Results 

de	la	Croix,	Egerstedt,	2014.		

•  Performance “Error”, Difficulty, Workload 
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Results 

de	la	Croix,	Egerstedt,	2014.		

•  Performance “Error”, Difficulty, Workload 

•  PEOPLE ARE REALLY BAD AT CONTROLLING 
SWARMS OF ROBOTS! 
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A (Welsh) Mood Picture 
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Duck Tales 
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Lagrangian Fluid Dynamics 

Lagrangian Swarms:  
•  Formation Control 
•  Flocking, Rendezvous, and Swarming    
•  Coverage Control 
•  Boundary Protection and Containment 
•  ...  
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Eulerian Fluid Dynamics 

Eulerian Swarms? 
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Manipulating the Mission/Environment? 

•  Key idea: Human operator specifies areas of interest and the 
robots respond 

J(x) =
NX

i=1

Z

Vi(x)
kx

i

� qk2�(q)dq

specification 

center of mass of Voronoi cell i 

     Gradient descent (Lloyd’s algorithm) 

xi(t)� ⇢i(x(t)) ! 0

     Achieves a CVT: 
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Time-Varying Density Functions 

•  Need time-varying human inputs  �(q, t)

d

dt

⇣
x� ⇢(x)

⌘
= 0 ) ẋ =

✓
I � @⇢

@x

◆�1
@⇢

@t

•  Problem 1: First need to get to a CVT 

@⇢

(k)
i

@x

(`)
j

=

R
@Vi,j

�q

(k) x
(`)
j �q

(`)

kxj�xik dqR
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�dq

�

R
@Vi,j

�
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j �q

(`)

kxj�xik dq
R
Vi

�q

(k)
dq

⇣R
Vi

�dq

⌘2

sparse

⇢
@⇢

@x

�
= sparse{GDelaunay}

sparse

(✓
I � @⇢

@x

◆�1
)

6= sparse{GDelaunay}•  Problem 3: Not distributed  

•  Problem 4: Messy… 

•  Problem 2: Inverse not always defined 
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Time-Varying Density Functions 

d

dt

⇣
x� ⇢(x)

⌘
= 0 ) ẋ =

✓
I � @⇢

@x

◆�1
@⇢

@t

•  Problem 1: First need to get to a CVT 
•  Problem 2: Inverse not always defined 
•  Problem 3: Not distributed 

ẋ =

✓
I +

@⇢

@x

◆✓
@⇢

@t

+ (⇢� x)

◆

•  Solution: Add a Lloyd term and use a truncated Neumann Series: 

Lee,	Diaz-Mercado,	Egerstedt,	TRO,	2015	

✓
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◆�1
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@⇢

@x

◆2

+ · · ·

xi(t)� ⇢i(x(t)) ! 0⇤
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Example 1: Precision Agriculture 

Li,	Diaz-Mercado,	Egerstedt,	2015	
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Example 2: The Robotarium 

•  MRI: A Shared, Remote-Access Multi-Robot Laboratory 
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Distributed Formation Control 

K. Fathian, N. Gans, M. Spong 

Fault-Tolerant Rendezvous 

H. Park, S. Hutchinson 

Attitude 
Synchronization 
J. Yamauchi, M. Fujita 

So Far…   [www.robotarium.org] 

Since Jan. 2016:  
115 robots, 21 research groups, 105 
student projects 
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Example 2: The Robotarium 
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Example 3: Mind Control 
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Eulerian Approached Beyond Density Functions 

Kingston,	Egerstedt,	2011	
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Summary III 

•  Lagrangian swarms at the level of the individual agents 
•  Eulerian swarms from the users’ perspective: 

–  Engage at the level of the team, not at the level of individuals 
–  (For small team sizes, leader-follower control still works ok) 

•  Embedded humans (human-swarm interactions) is still a major area of 
research! 
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To Summarize 

 Open issues: 
human-swarm interactions formations 

complex dynamics? malicious behaviors? beyond geometry?  
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Thank You!  
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Thank You!  
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