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OUTLINE

= MODELING: - Discrete Event Systems (DES)
- Hybrid Systems (HS)

= CONTROL AND OPTIMIZATION:
- Event-Driven Distributed Algorithms

- Data-Driven + Event-driven Algorithms:
The IPA Calculus

- Global optimality, escaping local optima
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TIME-DRIVEN v EVENT-DRIVEN SYSTEMS

TIME-DRIVEN A STATE SPACE:
SYSTEM X =R

DYNAMICS:
x = f(x,t)

STATES STATE SPACE:
EVENT-DRIVEN X _{ c : }
SYSTEM - S]_’ ? 1531 4

DYNAMICS:
x'= f(x,e)
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TIME-DRIVEN v EVENT-DRIVEN CONTROL

REFERENCE +__ ERROR OUTPUT

CONTROLLER [r———

MEASURED
OUTPUT

SENSOR

REFERENCE +_ ERROR OUTPUT

CONTROLLER [r——

MEASURED
OUTPUT

SENSOR

g(STATE) <0 |/
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REASONS FOR EVENT-DRIVEN
MODELS, CONTROL, OPTIMIZATION

= Many systems are naturally Discrete Event Systems (DES)
(e.g., Internet)
— all state transitions are event-driven

= Most of the rest are Hybrid Systems (HS)
— some state transitions are event-driven

= Many systems are distributed
— components interact asynchronously (through events)

= Time-driven sampling inherently inefficient (“open loop” sampling)
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REASONS FOR EVENT-DRIVEN
MODELS, CONTROL, OPTIMIZATION

= Many systems are stochastic
— actions needed in response to random events

= Event-driven methods provide significant advantages in
computation and estimation quality

= System performance is often more sensitive to event-driven
components than to time-driven components

= Many systems are wirelessly networked — energy constrained
— time-driven communication consumes significant energy
UNNECESSARILY!
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MODELING DES AND HS:
-Timed Automata
- Hybrid Automata




AUTOMATON

AUTOMATON: (E, X, I f, X,)
E: Event Set

X . State Space
I(X) : Set of feasible or enabled events at state x

f : State Transition Function f: X xE — X
(undefined for events e ¢ 7(x) )

X, . Initial State, Xg € X
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TIMED AUTOMATON

Add a Clock Structure V to the automaton: (E, X, 7; f, Xy, V)
where:

Vz{vi :ieE}

and v, is a Clock or Lifetime sequence: (VSRR
one for each event |

NEXT EVENT
Need an internal mechanism to determine

NEXT EVENT e’ and hence

NEXT STATE X' = f(x,€')
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HOW THE TIMED AUTOMATON WORKS...

» CURRENT STATE

xe X with feasible event set /{x)
» CURRENT EVENT

e that caused transition into x

» CURRENT EVENT TIME

t associated with e

CLOCK VALUE/RESIDUAL LIFETIME v;
with each feasible event i e/77(x)

Assoclate a
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HOW THE TIMED AUTOMATON WORKS...

» NEXT/TRIGGERING EVENT e':

e'=arg min {y,}

iel"(x)

» NEXT EVENT TIME t":
t=t+y*

where: y*= IErrlll(n){y,}

» NEXT STATE x':

Christos G. Cassandras CODES Lab. - Boston University



HOW THE TIMED AUTOMATON WORKS...

Determine new CLOCK VALUES Yy
for every event j < /(x

yi—y* iel(x)iel(x)ize
yi = Vi I e F(X')_ {F(X)_ e’}
0 otherwise

Vi | \X'= fAx,€"), e'=arg _n;i(n){yi}
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TIMED AUTOMATON - AN EXAMPLE

Given input: v, ={V,,V,,...}, Vy =V, Vy,...}
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TIMED AUTOMATON - A STATE TRAJECTORY
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STOCHASTIC TIMED AUTOMATON

= Same idea with the Clock Structure consisting of Stochastic Processes

= Assoclate with each event 1 a Lifetime Distribution based on

which v; Is generated

Generalized Semi-Markov Process
(GSMP)

In a simulator, v; is generated through a

pseudorandom number generator
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HYBRID AUTOMATA
G, =(Q, X,E,U, f,4, Inv,guard, p,q,,X,)

set of discrete states (modes)

set of continuous states (normally R")
set of events
set of admissible controls

vector field, f :Qx X xU — X
discrete state transition function, ¢:Qx X xE - Q

> C M X O

Inv:  set defining an invariant condition (domain), Inv c Q x X
guard: set defining a guard condition, guard c QxQx X

p. reset function, p:QxQx X xE —> X

0o- initial discrete state

X, initial continuous state
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HYBRID AUTOMATA

Key features:

Transition MAY occur

Guard condition: Subset of X in which a transition from
qto g’ is enabled, defined through ¢

Transition MUST occur

Invariant condition:  Subset of X to which x must belong in order

(domain) to remain in g. If this condition no longer holds,
a transition to some g' must occur,
defined through ¢
Reset condition: New value x' at g' when transition occurs
from (x,q)
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HYBRID AUTOMATA

Unreliable machine with timeouts

X(f) : physical state of part in machine
7(1): clock

o : START, : STOP, y: REPAIR
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HYBRID AUTOMATA

S Xx=2K .
\?t
d Guard

(1 e=qa

(2 =1

0 x>2K,e=p
0 e=y 1 otherwise
2 otherwise

0 otherwise
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STOCHASTIC HYBRID AUTOMATA

www.mathworks.com/products/simevents/

<} The MathWorks MATLAB&SIMULINK®
SimEvents Key Features
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CONTROL AND OPTIMIZATION — CHALLENGES

1. SCALABILITY ]
— mmp Distributed Algorithms

2. DECENTRALIZATION _

3. COMMUNICATION mm) Event-driven (asynchronous)
Algorithms

4. NON-CONVEXITY mm)  Global optimality,
escape local optima

5. EXLOIT DATA mm)  Data-Driven Algorithms

Christos G. Cassandras CODES Lab. - Boston University



WHEN CAN WE
DECENTRALIZE ?




MULTI-AGENT OPTIMIZATION: PROBLEM 1

= s5.:agentstate,i=1,..., N

s=[s; ..., Syl
= O obstacle (constraint)

= R(x): property of point x

= P(x,s): reward function

max H (s) = jQ P(x,s)R(X)dx

seFcQi1=1--- N

GOAL: Find the best state vector s=[s,, ..., s, | so that agents achieve
a maximal reward from interacting with the mission space
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MULTI-AGENT OPTIMIZATION: PROBLEM 2

s()eFcQ,i=1---NR@Ss, = f(s,u,t), i1=1---,N

GOAL: Find the best state trajectories s/(7), 0 <¢< T so that agents
achieve a maximal reward from interacting with the mission space
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WHEN CAN WE DECENTRALIZE A
MULTI-AGENT PROBLEM 17

max H (s) = jQ P(X, s)R(X)dX

= Recall:

P(x,s) = 1—H[1_ p; (X, Si)]

] _Ipi(xs)  xeV(s)
pi(X,Si)—{ 0 otherwise

= Define agent i
NEIGHBORHOOD.
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OBJECTIVE FUNCTION DECOMPOSITION

THEOREM: If P(x,s) = P(p,,...,py) IS @ function of local reward
functions p;, then H(s) can be expressed as:

H (S) = Hl(SiL)_*_ H2(§i)1

. . ~
forany1=1,...,N, where s, :[si,sbil ---,sbia]and['&j =[5, 500 8.1, 8,0 %04 8 ]

State of I and its neighbors only

OH(s) _ OH,(s7)

State of all agents except I

= Theorem implies

Christos G. Cassandras CODES Lab. - Boston University



OBJECTIVE FUNCTION DECOMPOSITION

= Theorem 1 often applies and is easy to check for the
“Problem 1” setting

EXAMPLE: Coverage Control Problems
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COVERAGE: PROBLEM FORMULATION

= N mobile sensors, each located at s.e R?

= Data source at x emits signal with energy E [sIf4

= Signal observed by sensor node i (ats;)

= SENSING MODEL.:
p. (X,S:) = P[Detected by 1 | A(x),S;]
( A(x) = data source emits at x )

= Sensing attenuation:
p:(x, s;) monotonically decreasing in d.(x) = ||X - S|
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COVERAGE: PROBLEM FORMULATION

= Joint detection prob. assuming sensor independence
(s=1[s,...,S\] : node locations)

Event sensing probability

= OBJECTIVE: Determine locations s = [s,,...,s,] to
maximize total Detection Probability:

max j R(X)P(X,5)dX IR R applies
Q
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DISTRIBUTED COOPERATIVE SCHEME
= Set

Sy ) = j R(X){l_H [1_ Pi (X)]}dx

= Maximize H(s,,...,Sy) by forcing nodes to move using
gradient information:

a—“ - [0 1Hk[1 b, (9] 2 8 o

Desired displacement = V- At

Cassandras and Li, EJC, 2005
Zhong and Cassandras, IEEE TAC, 2011
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DISTRIBUTED COOPERATIVE SCHEME CONTINUED

= [ROO TR~ p 0] 20 57

dx
1=1,i1=K adk( )dk( )

.. has to be autonomously evaluated by each node so
as to determine how to move to next position:

65

» Truncated p.(x) = Q replaced by node neighborhood O,
» Discretize p,(x) using a local grid

Christos G. Cassandras CODES Lab. - Boston University
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EVENT-DRIVEN
DISTRIBUTED
ALGORITHMS




DISTRIBUTED COOPERATIVE OPTIMIZATION

N system components
(processors, agents, vehicles, nodes),
one common objective:

min H(s,,...,Sy)

Sl"' N

s.t. constraints on each s,

min H(s,,...,Sy)

N

s.t. constraintson s,
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DISTRIBUTED COOPERATIVE OPTIMIZATION

Controllable state

s,(k+1) =5, (k) + ,d, (5(K))

Update Direction, usually

d; (s(k)) = =V;H (s(k))

min H(s,,...,Sy)

s.t. constraintson s.
| requires knowledge of all s,,...,Sy

Inter-node communication

Christos G. Cassandras CODES Lab. - Boston University




SYNCHRONIZED (TIME-DRIVEN) COOPERATION

COMMUNICATE + UPDATE

2

] e — — — — — — — —-
— — — — — — — — —

3

Drawbacks:
= Excessive communication (critical in wireless settings!)
= Faster nodes have to wait for slower ones
= Clock synchronization infeasible
= Bandwidth limitations
= Security risks

Christos G. Cassandras CODES Lab. - Boston University



ASYNCHRONOUS COOPERATION

» Nodes not synchronized, delayed information used

Update frequency for each node )
is bounded - S;(k+1) =s; (k) + ;d; (s(k))

>
+ converges
technical conditions

Bertsekas and Tsitsiklis, 1997
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ASYNCHRONOUS (EVENT-DRIVEN) COOPERATION

UPDATE
COMMUNICATE

= UPDATE at i : locally determined, arbitrary (possibly periodic)
= COMMUNICATE from i : only when absolutely necessary

Christos G. Cassandras CODES Lab. - Boston University



WHEN SHOULD A NODE COMMUNICATE?

Node state at any time t: x(t)

= S(k) = xi(t)
Node state at t, : s:(k)

AT UPDATE TIME t, : s‘j (k) : node | state estimated by node i

Estimate examples:

= EY(SEPA(A(I)] Most recent value

t -7 (k) .
k A ﬂi'di(xi(ﬂ(k)» Linear prediction

j

N s (k) = x; () (k) +

Christos G. Cassandras CODES Lab. - Boston University



WHEN SHOULD A NODE COMMUNICATE?

AT ANY TIME t :

= xJ (1) : node i state estimated by node j

= If node i knows how j estimates its state, then it can evaluate x/(t)

= Node i uses
* its own true state, x;(t)

+ the estimate that j uses, xJ(t)

... and evaluates an ERROR FUNCTION g(xi (t), . (t))

Error Function examples: |, (t) - X/ (t)Hl, % (£) = %/ (t)

2
Christos G. Cassandras CODES Lab. - Boston University



WHEN SHOULD A NODE COMMUNICATE?

Compare ERROR FUNCTION g(x, (t), X/ (t)) to THRESHOLD &

Node | communicates its state to node | only when it detects that
its true state x;(t) deviates from |’ estimate of it x/(t)

sothat g(x (t),x/(t))> 5

= Event-Driven Control

Christos G. Cassandras CODES Lab. - Boston University



THRESHOLD PROCESS

Update Direction, usually

d; (s'(k)) =-V;H(s'(k))

hear convergence
(small d;(s'(k))),
better estimates are needed

5. (K) = {K5Hdi (s' (k)H if keC' Intuition:

o.(k—-1)  otherwise

5,(0) = K, |d;(s'(0)|

Christos G. Cassandras CODES Lab. - Boston University



CONVERGENCE

Asynchronous distributed state update process at each I:

GOl

5.(k) = KéHdi(Sl(k)H If k sends l-deate
oi(k-1) otherwise

Christos G. Cassandras CODES Lab. - Boston University



CONVERGENCE

ASSUMPTION 1: There exists a positive integer B such that
forall i=1,....Nand k > 0 at least one of the elements
of the set {k—B+1, k—B+2,..., k} belongs to C.

INTERPRETATION: Each node updates its state at least once during a period
in which B state update events take place (no time bound)

ASSUMPTION 2: The objective function H(S), s e R™, m = Z
satisfies:

_1I

(@) H(s) > 0, for all s e g™
(b) H(-) continuously differentiable and vH (.) Lipschitz continuous,
I.e., there exists K, such that for all x,y € R"

[VH (x) - VH (y)||< K x - Y|
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CONVERGENCE

ASSUMPTION 3: There exist positive constants K,, K5 such that
foralli=1,...Nand k eC’

() d, (k)'V,H(s' (k) < {d. (k)| / K,
(b) K,V H (s (k) <||d, (k)|

NOTE: Very mild condition, immediately satisfied with K, = K5 = 1 when we use
the usual update direction given by d. (k) =—V.H (s'(k))

ASSUMPTION 4: There exists a positive constant K, such that
The ERROR FUNCTION satisfies

% () —x (0] < K,g (% (1) =%/ (1))

NOTE: Very mild condition, inmediately satisfied with K, = 1 when we use the
common choice g(X; (t) —x/(t)) = HXi (t) — x/ (t)H

Christos G. Cassandras CODES Lab. - Boston University



CONVERGENCE

THEOREM: Under A1-A4, there exist positive constants
o and K; such that

lim VH (s(k)) = 0

k—o0

Zhong and Cassandras, IEEE TAC, 2010

INTERPRETATION:
- Event-driven optimization achievable with
reduced communication requirements = energy savings
- No loss of performance
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CONVERGENCE

THEOREM: Under A1-A4, there exist positive constants
o and K; such that

lim VH (s(k)) = 0

k—o0

BYPRODUCT OF PROOF:
obtaining the largest possible K ; and hence the
smallest possible number of communication events:

oo
O<a<?2]/ K1K3 State dim. ~ network dim.

Christos G. Cassandras CODES Lab. - Boston University



COONVERGENCE WHEN DELAYS ARE PRESENT

j
g\X, X

_____________________________________________ Error function trajectory with
NO DELAY

Red curve: (X, X/

Black curve: g(xi X! )

DEL/

i T
4 7,07 T3

ij ij ij
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COONVERGENCE WHEN DELAYS ARE PRESENT

Add a boundedness assumption:

ASSUMPTION 5: There exists a non-negative integer D such

that if a message Is sent before t, , from node 1 to node |, it
will be received before t,.

INTERPRETATION: at most D state update events can occur between a node
sending a message and all destination nodes receiving this message.

THEOREM: Under A1-A5, there exist positive constants
a and K such that

lim VH (s(k)) = 0

k—>0

NOTE: The requirements on « and K depend on D and they are tighter.

Zhong and Cassandras, IEEE TAC, 2010
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SYNCHRONOUS v ASYNCHRONOUS

OPTIMAL COVERAGE PERFORMANCE

Energy savings + Extended lifetime

bl
T T T T T
E s |- or ....-..........-..E..............-.....i...........-.......; ......... . -:_Lm;y:‘mq‘_t
g N
£ i i ' fr“ A :
= H : H S
E S I N g A A W N
vaae | 5 ¥ =
; : 2 |
B - N A S SRS S
; ] I T P Aam— S SR NV _ E e ' J:f.-'e ° ! 1 !
F SYTIChroNous. i < P :
’ | : Y
E— D] I—— o O OSSO ST SO
L) -..-...-..-.....E. .................. ,-----., ..................................... ] o .'"{
| Aynchrongus, flxed s | f ]
e REYNChONOES. K, = 0.1 :
. e — — [ N : :
L F d 1 | 1 i . -
Time — Asynchronous. K, = 1
—— Agynchronous. fked &
— Synchronous ™

SYNCHRONOUS v ASYNCHRONOUS:

No. of communication events SYNCHRONOUS v ASYNCHRONOUS:
for a deployment problem with obstacles

Achieving optimality
in a problem with obstacles
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DEMO: OPTIMAL DISTRIBUTED DEPLOYMENT WITH
OBSTACLES - SIMULATED AND REAL

Nodes # EE | Low Detection Boost IT 1000000 | 7.0249356E7 | Evaluate Objectivy Event detect'on
i) 5 10 15 20 25 30 35 45 50 55 60 prObabIIIty P(x,S)
>0.97
0.97

10

f

Max Speed @ Sensing Decay 0.030 Sensing Range |57.0] Max Norm @ Kdelta |0.0 Est. Threshold |0.0
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IT IS HARD TO
DECENTRALIZE
PROBLEM 2 ...

MORE ON THAT LATER...
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DATA-DRIVEN +
EVENT-DRIVEN
ALGORITHMS



DATA-DRIVEN STOCHASTIC OPTIMIZATION

GOAL:
max E[L(0)]

u(t,0)eU

E[L(O)]

MDP: | max EU e “c(x(t,0),u(t, 9))dt} PERFORMANCE
0

o0

max E{ j e “c(x(t,0),u(t,0))dt

: GRADIENT
ESTIMATOR F-1.YI& g1 1H»Y-\7

DIFFICULTIES: - E[L(6)] NOT available in closed form

-V L (@) not easy to evaluate
-V L(6) may not be a good estimate of VE[L(O)]

Christos G. Cassandras CISE - CODES Lab. - Boston University




DATA-DRIVEN STOCHASTIC OPTIMIZATION IN DES:
INFINITESIMAL PERTURBATION ANALYSIS (IPA)

Model
Sample path 0der
) SV 4 g
B 1

CONTROL/DECISION Discrete Event
PERFORMANCE
(Parameterized by 6) System (DES) E[L(O)]

=0 +1n VL0, B
For many (but NOT all) DES:
- Unbiased estimators
- General distributions

- Simple on-line implementation

Christos G. Cassandras CISE - CODES Lab. - Boston University



REAL-TIME STOCHASTIC OPTIMIZATION:
HYBRID SYSTEMS

Sample path

CONTROL/DECISION HYBRID
PERFORMANCE
(Parameterized by 6) SYSTEM E[L(O)]

911+1 = gn + 7711VL(911) —

A general framework for an IPA theory in Hybrid Systems

Christos G. Cassandras CISE - CODES Lab. - Boston University



PERFORMANCE OPTIMIZATION AND IPA

Performance metric

(object

ive function):

[ J(0;x(8,0),T)= E|L(0;x(8,0),T)]

IPA goal:
- N
- Obtain unbiased estimates of dJ(‘g’ SEA ) , hormally _dL(H)
do do
- Then: 0,.=0,+n, aL(6,)
N 40 Y
NOTATION:

Christos G.

Cassandras

CISE - CODES Lab. - Boston University



THE IPA CALCULUS




IPA: THREE FUNDAMENTAL EQUATIONS

System dynamics over (7(0), 7.,,(O]: x= f,(x,6,1)

() ox(0.t) , _or,(6)

NOTATION: 7

1. Continuity at events: x(z,) =x(z,)

Take d/d6: xX'(z7)=x"(z ) +[fia(m) = fr (z )]y

)_dp(q ,q',X,0,0)

If no continuity, use reset condition = E¥E 10

Christos G. Cassandras CISE - CODES Lab. - Boston University



IPA: THREE FUNDAMENTAL EQUATIONS

2. Take d/d0 of system dynamics x = f, (x,0,¢) over (7(6), 7.,(O)]:

dx'(1) _ 9, (1)

xv(t) + Gfk(t)
dt Ox 00

Solve Eeal a]:;(t) '"(£)+ af"(t) over (7,(0), 7..,(O)]:

r &) , v () o
% OX % Ox d

x'(t)=e

initial condition from 1 above

NOTE: If there are no events (pure time-driven system),
IPA reduces to this equation
Christos G. Cassandras CISE - CODES Lab. - Boston University



IPA: THREE FUNDAMENTAL EQUATIONS

3. Get 7, depending on the event type:

- Exogenous event: By definition,

- Endogenous event: occurs when g,(x(6,7,),0)=0

- Induced events:

Christos G. Cassandras CISE - CODES Lab. - Boston University



IPA: THREE FUNDAMENTAL EQUATIONS

Ignoring resets and induced events:

Recall:
1. X)) =x'@)+ /i) - [i ()] ox(6,1)
=2
r az-k(e)
T 00

[ %,
o dv+x'(t))

J, jafk (v)
00

e

2. X'(t)=e

3. -0 or r’:—[agfm}l(agﬁg x'(r)j
Ck ¢ ox Tk 00 ox °

xX'(7; 2 Eg‘ N .
e Cassandras et al, Europ. J. Control, 2010
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IPA PROPERTIES

N Tk

Back to performance metric:  L(6)=>_ j L, (x,0,t)dt
k=0 7,
NOTATION: L,;(x,e,t)zﬁL"(x"g’t)
06
N JL(6) , , e
Then: TR = Tpt Ly (7400) =74 - Ly (7)) + ILk (x,0,t)dt
k=0 -
. 3V A J
v~ Y
What happens What happens
at event times between event times

Christos G. Cassandras CISE - CODES Lab. - Boston University



IPA PROPERTY 1: ROBUSTNESS

THEOREM 1: If either 1,2 holds, then dL(9)/d6 depends only on
information available at event times 7;:

1. L(x,6,¢) is independent of : over [ 7,(6), 7,.,(6)] for all &

2. L(x,0.) is only a function of x and for all  over [ 7,(0), 7, ,(6)]:

doL, dof, dof,

dt Ox dt ox dt 06

dL—@ - Z Tpn L (T — 74 'Lk(Tk)-l-b(t)dt}
9 & k

IMPLICATION: - Performance sensitivities can be obtained from information
limited to event times, which is easily observed

- No need to track system in between events !
Christos G. Cassandras CISE - CODES Lab. - Boston University




IPA PROPERTY 1: ROBUSTNESS

EXAMPLE WHERE THEOREM 1 APPLIES (simple tracking problem):

[[x() - g(¢)]dt}

st. x, =a,x,(t)+u,(6,)+w,(?) N %—a Ofy _ du,
k=1,....,N 00, do,

NOTE: THEOREM 1 provides sufficient conditions only.
IPA still depends on info. limited to event times if

Xp = 4 () +u, (6,,1) + w, (1)

k=1,...,N

for “nice” functions u,(6,.¢), e.g., b, 6

Christos G. Cassandras CISE - CODES Lab. - Boston University



IPA PROPERTY 1: ROBUSTNESS

l EVENTS

x=f(x,u,w,t;0)

z'k+ 1

Evaluating x(7;&) requires full knowledge of w and f'values (obvious)

dx(t;0)
do

However,

may be independent of w and f'values (NOT obvious)

It often depends only on: - event times 7,
- possibly f'(7_ )

Christos G. Cassandras CISE - CODES Lab. - Boston University



IPA PROPERTY 2: DECOMPOSABILITY

THEOREM 2: Suppose an endogenous event occurs at 7, with switching
function g(x, 0).

If 7.(z/)=0,then x'(z;) is independent of f, ,.

If, in addition, g _ 0 then x'(z,)=0
do

IMPLICATION: Performance sensitivities are often reset to 0
=> sample path can be conveniently decomposed

Christos G. Cassandras CISE - CODES Lab. - Boston University



IPA PROPERTY 3: SCALABILITY

IPA scales with the EVENT SET, not the STATE SPACE !

As a complex system grows with the addition of more states,

the number of EVENTS often remains unchanged or increases at a
much lower rate.

EXAMPLE: A queueing network may become very large, but the basic
events used by IPA are still “arrival” and “departure” at different nodes.

IPA estimators are EVENT-DRIVEN

Christos G. Cassandras CISE - CODES Lab. - Boston University



IPA PROPERTIES

In many cases:

- No need for a detailed model (captured by f,) to describe state behavior
in between events

- This explains why simple abstractions of a complex stochastic system
can be adequate to perform sensitivity analysis and optimization,
as long as event times are accurately observed and local system behavior
at these event times can also be measured.

- This is true in abstractions of DES as HS since:
Common performance metrics (e.g., workload) satisfy THEOREM 1

Christos G. Cassandras CISE - CODES Lab. - Boston University



WHAT IS THE RIGHT ABSTRACTION LEVEL ?

TOO FAR...

model not
detailed enough

TOO CLOSE...
too much
undesirable
detail
JUST RIGHT...
good model CREDIT: W.B. Gong

Christos G. Cassandras CISE - CODES Lab. - Boston University



A SMART CITY
CPS APPLICATION:

ADAPTIVE
TRAFFIC LIGHT CONTROL




TRAFFIC LIGHT CONTROL - BACKGROUND

A basic binary switching control (GREEN - RED) problem
with a long history...

* Mixed Integer Linear Programming (MILP) [Dujardin et al, 2011]

+ Extended Linear Complementarity Problem (ELCP) [DeSchutter, 1999]
* MDP and Reinforcement Learning [Yu et al., 2006]

» Game Theory [Alvarez et al., 2010]

 Evolutionary algorithms [Taale et al., 1996]

* Fuzzy Logic [Murat et al., 2005]

» Expert Systems [Findler and Stapp, 1992]

* Perturbation Analysis
Christos G. Cassandras CODES Lab. - Boston University



TRAFFIC LIGHT CONTROL - BACKGROUND

* Perturbation Analysis [Panayiotou et al., 2009] Single
l [Geng and Cassandras, 2012] Intersection

Use a Hybrid System Model: Stochastic Flow Model (SFM)

Aggregate states into modes and keep only events causing mode transitions

Christos G. Cassandras CODES Lab. - Boston University



SINGLE-INTERSECTION MODEL

Traffic light control:
0=[6.,0,,0,,0,]

GREEN light cycle

at queue n =1,2,3,4

OBLECTIVE:
Determine @ to minimize
total weighted vehicle queues

Christos G. Cassandras CISE - CODES Lab. - Boston University



SINGLE-INTERSECTION MODEL

minJ, (9)_ { j (H,t)dt}:%E[LT(H)]

IPA APPROACH:

dL, (0)

- Observe events and event times, estimate 10

9]’1 )
do

through

dJ, (0)
do

- Then, 9n+1 = en + 77}1

Christos G. Cassandras CISE - CODES Lab. - Boston University



HYBRID SYSTEM STATE DYNAMICS

G -

n

GREEN n

S |

0, 5
GREEN n ® /Q 0

0 otherwise

()= {1 S SONREAURA  GREEN light “clock”

Control: GREEN light cycle

Christos G. Cassandras CISE - CODES Lab. - Boston University



HYBRID SYSTEM STATE DYNAMICS

Z'(f):{l 7 0<2,()<6, 0rz(1)=0; @z (") =0if z,(1) =9,

0 otherwise [RESOURCE DYNAMICS]

if 0<z (t)<0, orz (1)=0.

otherwise

Define: feNe) :{1
! 0

USER DYNAMICS]

Vehicle departure rate process

Vehicle arrival rate process

Christos G. Cassandras CISE - CODES Lab. - Boston University



EVENTS IN THE TLC MODEL

Event G2R
Event R2G GREEN light switches to RED
RED light switches to GREEN endogenous

endogenous

5 6 7
éj’-:’" t3_,m t3,m t3,m t3_,m 3,m "3.m “3,m"3.m "3.m

Event S Event E
Non-Empty-Period (NEP) starts Non-Empty-Period (NEP) ends
endogenous or exogenous endogenous

Christos G. Cassandras CISE - CODES Lab. - Boston University



APPLY IPA EQUATIONS FOR 6 AND s VECTORS

FOR EXAMPLE: Endogenous event with
g,(x(6,7,),0)=x,(0,1)=0

- 'xn,i (TA_)

Coa,(r)-B,.(t,)

e, (z)- B, (), (z7)
aq, (Tk) — ﬂn (Tk)

X)) =x' @)+ (@)~ £, W, (7)) =x, ,(7;) -

=0

T

Perturbation in queue n
RESET to 0 when NEP ends

Christos G. Cassandras CISE - CODES Lab. - Boston University



COST DERIVATIVE IN mth NEP

. R
SF;

T ,m (9)
é: n,m (9)

x (6,t)dt
/ 4 5 6 7
‘3,m “3.m  “3,m “3,m 3,m"3.m “3.m 3.m “3,m

NOTES: - Need only TIMERS, COUNTERS and state derivatives
- Scaleable in number of EVENTS - not states!

Christos G. Cassandras CISE - CODES Lab. - Boston University



TYPICAL SIMULATION RESULTS

250 \f&\—ﬁ

average cost

GREEN cycle length

O-fold cost reduction

\"K 1 \
e AW 10 L : e

5 10 15 20 0 5 10 15 20
i i iteration

40 T T : i o
*— 61

“g,\ Traffic pattern changes | " -

BL \ \ o

| [+=05

Adaptivity

15 SO B S-S SoS— SO SO0

60
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IT IS HARD TO
DECENTRALIZE
PROBLEM 2 ...




MULTI-AGENT OPTIMIZATION: PROBLEM 2

s()eFcQ,i=1--- N@s, = f(s,u,t), i=1--- N

GOAL: Find the best state trajectories s/(7), 0 <¢< T so that agents
achieve a maximal reward from interacting with the mission space

Christos G. Cassandras CODES Lab. - Boston University



PERSISTENT MONITORING PROBLEM

GOAL: Find the best state trajectories s.(7), 0 <7< T so that agents
achieve a maximal reward from interacting with the mission space

Need three model elements:

1. ENVIRONMENT MODEL

max J = jOT [ Px.s(u(t) R(x)dxds

2. SENSING MODEL l
(how agents interact with environment)

3. AGENT MODEL

Christos G. Cassandras CODES Lab. - Boston University



PERSISTENT MONITORING PROBLEM

Start with 1-dimensional mission space Q2 = [0,L]

AGENT DYNAMICS:

Analysis still holds for: RFEE-SICIE /M 7¥ (t)‘ <1

Christos G. Cassandras CODES Lab. - Boston University



PERSISTENT MONITORING PROBLEM

SENSING MODEL: p(x,s) Probability agent at s senses point x

Christos G. Cassandras CODES Lab. - Boston University



PERSISTENT MONITORING PROBLEM

ENVIRONMENT MODEL: Associate to x Uncertainty Function R(x,?)

ROur) = {O if R(x,t)=0, A(x) < Bp(x,s(t))

A(x)—Bp(x,s(t)) otherwise

If x is a known “target”: Rx (1) = f.(R,s,t)+noise

Christos G. Cassandras CODES Lab. - Boston University




PERSISTENT MONITORING PROBLEM

Partition mission space Q2 =[0,L] into M intervals:

® ()
(04 Y Y 04
1 <_. <_. M

For each interval i = 1,...,M define Uncertainty Function R (1):

B (r) = 0 if R(t)=0, A < BP(s(?))
(0= A —BP(s(t)) otherwise

pi(Sj)Epj(az’9Sj)

where P(s) = joint prob. i is sensed by agents located at s = [s,,...,5,]

Christos G. Cassandras CODES Lab. - Boston University



PERSISTENT MONITORING (PM)
WITH KNOWN TARGETS

u (<1, 0<a<s,()<b<L

0 if R (t)=0, 4, < BP(s(?))
A4, — BP,(s(¢)) otherwise

Christos G. Cassandras CODES Lab. - Boston University



PERSISTENT MONITORING WITH KNOWN TARGETS

Petelete? et e TeTe
Betatiteretiecaie iancelesy,
Tae e e e
"(.‘)'\.\/(0‘(97.)\’0,(.‘"‘)\0/(.".)\,2(0‘(9’0 LR
FE S OSSOSO SIS SS
$letete sieteleTiTeTeTeTeTs siete s
R Tete e s e e i etaetee s e
ATl esstetatetesriete e e
2SI SC L E S LI
Reteletedeteledete et tek
RSaielesatetesaiatesy
"2 St
i

4

Christos G. Cassandras

Agent-Target
Interaction Network Bl Agent Network
(time-varying) (time-varying)

Hard to decentralize a controller that involves
time-varying agent-environment interactions
CODES Lab. - Boston University




THREE TYPES OF NEIGHBORHOODS

The agent neighborhood of an agent (conventional) The target neighborhood of an agent

The agent neighborhood of agent j is the set The target neighborhood of agent j is the set
Aj(t) = {k : |Isk(t) = (D)l < re, k #J, Ti(t) =10 xi — 5(t)| <

The agent neighborhood of an target
The agent neighborhood of target / is the set

Christos G. Cassandras CODES Lab. - Boston University



PM WITH KNOWN TARGETS - 1D CASE

We have shown that:

1. Optimal Trajectories are bounded:

2. Existence of finite dwell times at target on optimal trajectories:

WG ET IV G Rl (1) = x, and u(¢) = 0 for ¢ €[1,,¢,]

3. Under the constraint s(¢) <s,,(¢), on an optimal trajectory:

Sj(t) e Sj+1(t)

Christos G. Cassandras CODES Lab. - Boston University



OPTIMAL CONTROL SOLUTION

Optimal trajectory is fully characterized by TWO parameter vectors:

0.=10,--65] j=1...N wo=|w,we |l j=1..,N

J jl-

Switching points Waiting times at

switching points, w;, >0

7, . kth event time

=> Under optimal control, this is a HYBRID SYSTEM

Christos G. Cassandras CODES Lab. - Boston University



TABLE I: Events in agent-target system

: Event Name || Description
Typel: 7 Ri(f) hits
switches in R;(t) i R, (1) leaves 0
0 ; hits 0
— G I
. , T ii(s;(t)) leaves
switches in b e
: v u;(t) switches from 1 to 0
agent sensing )
v u;(t) switches from —1 to 0
Type 3: z/;O’l) w;(t) switches from 0 to 1
switches in uj(.o'_l) u;(t) switches from 0 to —1
.S"j (t) z/j(.l'_l) u;(t) switches from 1 to —1
by u;(t) switches from —1 to 1
Type 4: Azﬁj Nij(r7) = Nij(r= ) U{k}, k & Nij (™)
changes in A Nij(r7) = Nij(r7) \ {k}, k € Nij(r™)

neighbor sets ote: events 1n the table include all v=1,....Mand y=1,...,

U Ci adllUra DL ol KU



HYBRID SYSTEM EVENTS: EXAMPLE

if R(1)=0, 4, < BP(s(?))

A —BP(s(t)) otherwise

A simple example: 1 agent 1 target
Event type 1

I Y

Event type 2

Christos G. Cassandras CODES Lab. - Boston University



IPA GRADIENTS

Objective function gradient'

00 OW

OR.(H) OR (t)T

VRi(t):|:

where VR (¢) is obtained using the IPA Calculus

¢ VR (?) is updated on an
EVENT-DRIVEN basis
_ ’@‘“%{ 260 550 dwx.(m} 7. kth event time

' RNy
, ; og og  0g
2 g-0 o %=] Zne| (Z+Brap) A

Christos G. Cassandras CODES Lab. - Boston University

1. x'(7) = xX'(¢ ) +[fia (7)) = fi (7)) 7




AGENT AND TARGET EVENTS

TABLE I: Events in agent-target system

| Event Name || Descrpion |
T [Rohso
I-I

| | TARGET
AGENT o e
Event Set £4 0; e - Event Set €T

Christos G. Cassandras CODES Lab. - Boston University



LOCAL EVENT SETS FOR AGENTS

ng: Subset of £4 that contains only events related to agent j

SJ-T: Subset of £ that contains only events related to agent j

Definition
The local event set of any agent j is the union of agent events EJA and
target events & for all i € T(t):

5AU£T

i€T;(t)

Christos G. Cassandras CODES Lab. - Boston University



HOW CAN WE DECENTRALIZE ?

DECENTRALIZATION: Each agent should be able to evaluate

...based only on LOCAL events (|.e., events it can observe)

Can this gradient be evaluated by every agent j using ONLY
local events in &; (7) ?

Christos G. Cassandras CODES Lab. - Boston University



“ALMOST DECENTRALIZATION”

THEOREM: Any centralized solution of the trajectory optimization
problem can be recovered through

o] = (0] - b oLV (@)

In which each agent j optimizes its trajectory under the following
conditions:

1. Initial trajectory parameters (6°,w")

2. The LOCAL information set I,(t) = &,(t) L Exr(t)

k '.'\",_, (t).1€ TJ (t)

3. The subset of the GLOBAL information set {¢V.i & 7;(t)}

Christos G. Cassandras CODES Lab. - Boston University



“ALMOST DECENTRALIZATION”: EXAMPLE

“Almost decentralized”
solution, J* = 37.38

50 100 150 200 250 300

t
Cost v.s. Number of Iterations
120

Fully decentralized solution &g
(ignorinig non-local events), HM
J*=41.66 40

20

0
0 20 40 60 80 100 120 140 160 180 200
Number of Iterations

0 50 100 150 200
Number of Iterations

Agent 1 knowledge of target 3

Red: true state of target 3

Blue: state of target 3 observed by agent 1
when in its neighborhood

Green dots: instants when agent 1 receives

non-local events

200
{
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CONTROL AND OPTIMIZATION — CHALLENGES

1. SCALABILITY 7
— mmp Distributed Algorithms

2. DECENTRALIZATION _

3. COMMUNICATION mm) Event-driven (asynchronous)
Algorithms

4. NON-CONVEXITY mm)  Global optimality,
escape local optima

5. EXLOIT DATA mm)  Data-Driven Algorithms

Christos G. Cassandras CODES Lab. - Boston University



LOCAL OPTIMUM EXAMPLE

R... | Nodes# | 10 |;| DataSource# ofls M Obj.value: 1183.457 (*) noBoost

20 J 30 40 1 50 55 60

Event detection

probability P(x,s)

B >0.97
0.97

FOV 6.283  Delay = MaxSpeed 5.0 SensingDecay 0.12 SensingRange 80.0 MaxNorm 1.0 Kdelta 0.0

Applet started.

Christos G. Cassandras CODES Lab. - Boston University



“BOOSTING FUNCTION” IDEA

At a local optimum s!

Alter F(s) to H.(s)

NOTE: Hard to find the proper H (s) == try altering az;r,.(s) directly
Si

Christos G. Cassandras CODES Lab. - Boston University



PARTIAL DERIVATIVE STRUCTURE

w,(P;(r),s;)

[AVAVER I AV e AV AN A AV] NV VUI'HIUUU vy

Christos G. Cassandras CODES Lab. - Boston University



BOOSTING FUNCTION APPROACH

BOOSTING FUNCTION: Transform the derivative so its value is # 0 and
provides a “boost” towards more likely optimum

1’T}l(xa Si) =gi(W1 (x, Si)) Wz(x, S,-) =hl.(w2(x, Si))

Focus on linear forms:

W (x,5,) = 6, (5, 8) Wy (5,5,) + (%, 5)

1;‘\/2 (ani) — 0[2()6, S)Wz(xasi) + 132 (x,8)

Christos G. Cassandras CODES Lab. - Boston University



THREE BOOSTING FUNCTIONS

1. P-boosting function

2. Neighbor-boosting function

3. ®-boosting function

Christos G. Cassandras CODES Lab. - Boston University



P-BOOSTING FUNCTION

Assign higher weights for low-coverage points

a,(x,s)=kP(x,s)?
b (x,5)=0
a,(x,s)=1
b,(x,s)=0

w, (x,s,) =kP(x,8)”" w,(x,s,)

WZ(xﬂsi):WZ(xﬂsi) P(xas)=1- Pg[l'ﬁi(xasi)]

sing,

Boosted 1(s) » (x-s,).
. Dl.j

e dxB g sgn(n,,)
derivative: d,(x)

Q' (ry(r),s)rdr

G
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NEIGHBOR-BOOSTING FUNCTION

Add repelling forces from agent’s neighbors

w (x,s,)=w/(x,s;)+ ZjeB,. 5(x—sj)
w,(x,s;) = w,(x,s,)

Boosted T . Y- s o si
] . 1 —_ w , S, 1/7x ; jx)
derivative:

Christos G. Cassandras CODES Lab. - Boston University
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w,(r.(r),s )rdr
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®-BOOSTING FUNCTION

Boost weights for points poorly covered by agent’s neighbors

a,(x,s) =kF ;(x)’
b (x,s)=0

a,(x,s)=1
b,(x,s)=0

ﬁ/l(xa Si) =kF l-(X)gWI(.X, Si)
W, (x,5,) =W, (x,5,) @0 = [[1= 55

Boosted FEiRD
derivative: &S

Christos G. Cassandras CODES Lab. - Boston University

sin 9
D.

)

(x—s,),

J.V() 1( S) () dX‘f‘ZSgn(Vl I WZ(IOJ(]/‘) )le”




BOOSTING PROCESS EXAMPLE

Applet Viewer: coverage.Coverage.class

N

DataSource# 0|l 4 Obj.Value. 135.58426 *) noBoost neighborBoost

20 30 40 50 55 60
p
Boost Duration 500000.0
Boost Iteraticn 0.0
Power Gain nu | 100.0

Power lamda 4.0
Neighbor Gain g |500.0
Neighbor power

Phi Gain eta | 100.0

Phi Power kar 2.0

Update Obstacle Locations

272627512851 2826
47 2647 51 4851 48 26
0 S7 7 §7 81 GR S1 GR 7h

FOV (6.283  Delay MaxSpeed 5.0 | SensingDecay |0.12 SensingRange [80.0 MaxNorm 1.0 Kdelta 0. Est.Threshold 0.0 CollectDecay

\pplet started.




COVERAGE EXAMPLE: SIMULATED v REAL
@ 5 10 15 20 25

5
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RELATED APPROACHES FOR GLOBAL OPTIMALITY

Simulated Annealing:
» Random perturbations for escaping local optima
» Can reach global optimum but very slow

Multistarts, Stochastic Comparison Algorithm (SCA):
» Random initial points
» SCA can reach global optimum but very slow

Submodularity, greedy algorithms:
* If H(s) submodular, can obtain bounds
— sometimes very tight !

/12N — R submodular if  f(SWik}) = f(S) 2 f(T'ik})— f(T)

foranyScT cF,keF,keT
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SUMMARY, RESEARCH DIRECTIONS

» Small, cheap cooperating devices cannot handle complexity
—=> we need DISTRIBUTED control and optim. algorithms

» Cooperating agents operate autonomously (asynchronously)

= we need ASYNCHRONOUS (EVENT-DRIVEN)
control/optimization schemes

» Too much communication kills node energy sources

= communicate ONLY when necessary
—> we need EVENT-DRIVEN control/optimization schemes

> Networks grow large, sensing tasks grow large
—> we need SCALABLE control and optim. algorithms

Christos G. Cassandras CODES Lab. - Boston University



