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Data collection:

relatively easy…

Control:

a challenge…

THE “INTERNET OF THINGS”
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COLLECTING DATA IS NOT “SMART”

- JUST A NECESSARY STEP TO

BEING “SMART”

PROCESSING DATA TO MAKE 

GOOD DECISIONS IS “SMART”

INFO

INFOACTION
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WHAT IS REALLY “SMART” ?





MODELING:

TIMED-DRIVEN

vs

EVENT-DRIVEN
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TIME-DRIVEN v EVENT-DRIVEN SYSTEMS



TIME-DRIVEN v EVENT-DRIVEN CONTROL 
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EVENT:

g(STATE) ≤ 0

EVENT-DRIVEN CONTROL:  Act only when needed (or on TIMEOUT) - not based on a clock
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REASONS FOR EVENT-DRIVEN
MODELS, CONTROL, OPTIMIZATION
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 Many systems are naturally Discrete Event Systems (DES) 

(e.g., Internet) 

→ all state transitions are event-driven

 Most of the rest are Hybrid Systems (HS)

→ some state transitions are event-driven

 Many systems are distributed

→ components interact asynchronously (through events)

 Many systems are wirelessly networked → energy constrained 

→ time-driven communication consumes significant energy



REASONS FOR EVENT-DRIVEN
MODELS, CONTROL, OPTIMIZATION
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 Many systems are stochastic

→ actions needed in response to random events

 Event-driven methods provide significant advantages in
computation and estimation quality

 Time-driven sampling inherently inefficient (“open loop” sampling)

 System performance is often more sensitive to event-driven

components than to time-driven components



SYNCHRONOUS v ASYNCHRONOUS BEHAVIOR
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TIME

Time-driven (synchronous) implementation:

- Sum repeatedly evaluated unnecessarily

- When evaluation is actually needed, it is done at the wrong times !

TIME

t1 t2

SYNCHRONOUS v ASYNCHRONOUS COMPUTATION
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MULTI-AGENT

NETWORK SYSTEMS



The multi-agent system framework consists of a team 

of autonomous agents cooperating to carry out 

complex tasks within a given environment.

Applications:

– Monitoring (data sources/targets)

– Search and rescue

– Smart buildings

– Intelligent transportation

– Formation flight of Unmanned Aerial Vehicles

COOPERATIVE MULTI-AGENT SYSTEMS
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NiFsi ,,1 , 

 R(x): property of point x

 P(x, s): reward function

 Oj: obstacle (constraint)x

ia
a1
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 si: agent state, i = 1,…, N

s=[s1, … , sN ]
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MULTI-AGENT OPTIMIZATION: PROBLEM 1

Ω

GOAL: Find the best state vector s=[s1, … , sN ] so that agents achieve 
a maximal reward from interacting with the mission space
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MULTI-AGENT OPTIMIZATION: PROBLEM 2

Ω

GOAL: Find the best state trajectories si(t), 0 ≤ t ≤  T so that agents 
achieve  a maximal reward from interacting with the mission space

Nitusfs iiii ,,1   ),,,(  

May also have dynamics



PROBLEMS

THAT FIT THIS

FRAMEWORK
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COVERAGE CONTROL: ACTIVE COOPERATION

 dxxRxPH )(),()(max ss
s

Event density: Prior 

estimate of event 

occurrence frequency
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Deploy sensors to maximize “event” detection 
probability - unknown event locations
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COVERAGE CONTROL: VORONOI PARTITIONING
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COVERAGE CONTROL:
ACTIVE COOPERATION vs PARTITIONING

Voronoi patition;

Optimal obj. function = 1346.5

Gradient-based cooperative algorithm;

Optimal obj. function = 1388.1
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CONSENSUS
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COVERAGE CONTROL v PERSISTENT MONITORING

COVERAGE CONTROL:

Deploy sensors to maximize “event” detection probability 

– unknown event locations
– event sources may be mobile
– sensors may be mobile 

Perceived event density (data sources) over given region (mission space)
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COVERAGE CONTROL v PERSISTENT MONITORING

PERSISTENT MONITORING: 

– environment cannot be fully covered by stationary team of agents

– all areas of mission space must be visited infinitely often

– minimize some measure of overall uncertainty


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2. Once a Data Source is detected, collect data from it,

track it if mobile

?
?

? ?

?

?
?

COVERAGE CONTROL + PERSISTENT MONITORING
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3. Continue to seek data sources while collecting data from 

detected sources

?
?

?

?

?
?

?

?
?

1. Seek and detect “Data Sources”

(or “Targets”)
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REACTING TO EVENT DETECTION

Important to note:

There is no external 

control causing this 

behavior. Algorithm 

includes tracking 

functionality 

automatically
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Persistent monitoring/surveillance:
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PERSISTENT MONITORING PROBLEM

Need three elements:

1. ENVIRONMENT MODEL

2. SENSING MODEL 

(how agents interact with environment)

3. AGENT MODEL Nitusfs iiii ,,1   ),,,(  
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t
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GOAL: Find the best state trajectories si(t), 0 ≤ t ≤  T so that agents 
achieve  a maximal reward from interacting with the mission space
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PERSISTENT MONITORING PROBLEM

Start with 1-dimensional mission space  = [0,L]

AGENT DYNAMICS: 1)(   ,  tuus jjj


Analysis still holds for: 1)(   ,)(  tubusgs jjjjj
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PERSISTENT MONITORING PROBLEM

s(t)

x

SENSING MODEL: p(x,s) Probability agent at s senses point x

ENVIRONMENT MODEL:  Associate to x Uncertainty Function R(x,t)
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PERSISTENT MONITORING PROBLEM

…

Partition mission space  = [0,L] into M intervals:

a1 aM

For each interval i = 1,…,M define Uncertainty Function Ri(t):
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OPTIMAL CONTROL PROBLEM

Determine u1(t),…,uN(t) such that
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PERSISTENT MONITORING IN 2D MISSION SPACE

Agents play a cooperative PACMAN 

game against “uncertainty” which 

continuously regenerates…

Dark brown:

HIGH uncertainty

White:

NO uncertainty

JAVA multi-agent simulator designed to interactively test various 
controllers. Polygonal obstacles may be added to the environment. 
http://people.bu.edu/cgc/gengyf/density/density.htm
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PERSISTENT MONITORING WITH KNOWN TARGETS



TRAFFIC NETWORK

CONTROL

The BU Bridge mess, Boston, MA (simulation using VISSIM)



… EVEN IF WE KNOW

THE ACHIEVABLE 

OPTIMUM IN A 

TRAFFIC NETWORK ???
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WHY CAN’T WE IMPROVE TRAFFIC…

Because:

• Not enough controls (traffic lights, tolls, speed fines)

→ No chance to unleash the power of feedback!

• Not knowing other drivers’ behavior leads to poor decisions 

(a simple game-theoretic fact)

→ Drivers seek individual (selfish) optimum,

not system-wide (social) optimum
PRICE OF ANARCHY

(POA)
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GAME-CHANGING OPPORTUNITY:
CONNECTED AUTOMATED VEHICLES (CAVs) 

NO TRAFFIC LIGHTS, NEVER STOP…

FROM (SELFISH) “DRIVER OPTIMAL” 

TO (SOCIAL) “SYSTEM OPTIMAL” 

TRAFFIC CONTROL

THE “INTERNET OF CARS”
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WHO NEEDS TRAFFIC LIGHTS?

With traffic lights With decentralized control of CAVs

One of the worst-designed double intersections ever… 

(BU Bridge – Commonwealth Ave, Boston)



KEY

TECHNICAL

CHALLENGES



1. SCALABILITY 

2. DECENTRALIZATION

3. COMMUNICATION

4. NON-CONVEXITY

5. EXLOIT DATA
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CONTROL AND OPTIMIZATION – CHALLENGES

Distributed Algorithms

Global optimality,

escape local optima

Event-driven (asynchronous) 

Algorithms

Data-Driven Algorithms


