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“SMART CITY” AS A CYBER-PHYSICAL SYSTEM
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“SMART CITY” AS A CYBER-PHYSICAI. SYSTEM

Christos G. Cassandras CISE - CODES Lab. - Boston University



WHAT IS REALLY “SMART” ?

COLLECTING DATA IS NOT “SMART”

= JUST ANECESSARY STEP TO
BEING “SMART”

PROCESSING DATA TO MAKE ‘
GOOD DECISIONS IS “SMART” .
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MODELING:

TIMED-DRIVEN
VS
EVENT-DRIVEN



TIME-DRIVEN v EVENT-DRIVEN SYSTEMS

TIME-DRIVEN A STATE SPACE:
SYSTEM X =R

DYNAMICS:
x = f(x,t)

STATES STATE SPACE:
EVENT-DRIVEN X _{ c : }
SYSTEM - S]_’ ? 1531 4

DYNAMICS:
x'= f(x,e)
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TIME-DRIVEN v EVENT-DRIVEN CONTROL
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REASONS FOR EVENT-DRIVEN
MODELS, CONTROL, OPTIMIZATION

= Many systems are naturally Discrete Event Systems (DES)
(e.g., Internet)
— all state transitions are event-driven

= Most of the rest are Hybrid Systems (HS)
— some state transitions are event-driven

= Many systems are distributed
— components interact asynchronously (through events)

= Many systems are wirelessly networked — energy constrained
— time-driven communication consumes significant energy
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REASONS FOR EVENT-DRIVEN
MODELS, CONTROL, OPTIMIZATION

= Many systems are stochastic
— actions needed in response to random events

= Event-driven methods provide significant advantages in
computation and estimation quality

= Time-driven sampling inherently inefficient (“open loop” sampling)

= System performance is often more sensitive to event-driven
components than to time-driven components
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SYNCHRONOUS v ASYNCHRONOUS BEHAVIOR
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SYNCHRONOUS v ASYNCHRONOUS COMPUTATION
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MULTI-AGENT
NETWORK SYSTEMS




COOPERATIVE MULTI-AGENT SYSTEMS

The multi-agent system framework consists of a team
of autonomous agents cooperating to carry out
complex tasks within a given environment.

Applications:
— Monitoring (data sources/targets)
— Search and rescue
— Smart buildings
— Intelligent transportation
— Formation flight of Unmanned Aerial Vehicles
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MULTI-AGENT OPTIMIZATION: PROBLEM 1

= s5.:agentstate,i=1,..., N

s=[s; ..., Syl
= O obstacle (constraint)

= R(x): property of point x

= P(x,s): reward function

max H (s) = jQ P(x,s)R(X)dx

seFcQi1=1--- N

GOAL: Find the best state vector s=[s,, ..., s, | so that agents achieve
a maximal reward from interacting with the mission space

Christos G. Cassandras CODES Lab. - Boston University



MULTI-AGENT OPTIMIZATION: PROBLEM 2

s()eFcQ,i=1---NR@Ss, = f(s,u,t), i1=1---,N

GOAL: Find the best state trajectories s/(7), 0 <¢< T so that agents
achieve a maximal reward from interacting with the mission space
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PROBLEMS
THAT FIT THIS
FRAMEWORK




COVERAGE CONTROL: ACTIVE COOPERATION

Deploy sensors to maximize “event” detection
probability - unknown event locations

max H (s) = jQ P(x,s)R(X)dX

Event density: Prior
estimate of event

N
P(x,s) :1_1_[[1_ D, (X,S,)] occurrence frequency
=1

Event sensing probability

Joint event detection probability:
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COVERAGE CONTROL: VORONOI PARTITIONING

max H (s) = ZN: L f (|x—s;[)R(x)dx

Vi = xe Q:fx—s]<|x—s|, j =1

f (|x—s,) :sensing quality

R(x) :event occurrence frequency

max H () = j P(x,s)R(X)dx .
: - P(x,5) = p(%5)

f(x—s|) xeV,

pi(X’Si):{ 0 X2V
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COVERAGE CONTROL:
ACTIVE COOPERATION vs PARTITIONING

Start R... | Nodes# 5 || DataSource# | 0|[; ™ Obj.value: 1364.0013 - - cEVent detectlon

10 15 20 25 35 40 45

R.. | Nodes#  5|[;| DataSource# | 0|[; ™ Obj.value: 1402.5215

10 15 20 25 30 35 40 45 50

50
FOV |6.283 | Delay | MaxSpeed |10.0 SensingDecay 0.12) SensingRange  80.0| MaxNorm 1.0 Kdelta 0.0 Est

Applet started.

Voronoi patition;

[Applet started.

Gradient-based cooperative algorithm;
Optimal obj. function = 1388.1
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CONSENSUS

$,(8) = D_s;(t)—si(t)

JeN;

Only x that matter
are agents

(Siis):%Zpi(sj’si)

JeN;

Is;~s| jeN,j>i
0 otherwise,
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COVERAGE CONTROL v PERSISTENT MONITORING

COVERAGE CONTROL:
Deploy sensors to maximize “event” detection probability

— unknown event locations

— event sources may he mobile
— sensors may be mobile

Perceived event density (data sources) over given region (mission space)
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COVERAGE CONTROL v PERSISTENT MONITORING

PERSISTENT MONITORING:
— environment cannot be fully covered by stationary team of agents
— all areas of mission space must be visited infinitely often
— minimize some measure of overall uncertainty
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COVERAGE CONTROL + PERSISTENT MONITORING

1. Seek and detect “Data Sources”
(or “Targets”)

2. Once a Data Source is detected, collect data from it,
track it if mobile

3. Continue to seek data sources while collecting data from

detected sources
Christos G. Cassandras CODES Lab. - Boston University



REACTING TO EVENT DETECTION

Important to note:

There is no external
control causing this
behavior. Algorithm
includes tracking
functionality
automatically
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PERSISTENT MONITORING PROBLEM

GOAL: Find the best state trajectories s.(7), 0 <¢< T so that agents
achieve a maximal reward from interacting with the mission space

Need three elements:

1. ENVIRONMENT MODEL

max J = jOT [ PO, su(t)R()dxdt

2. SENSING MODEL

(how agents interact with environment)

3. AGENT MODEL
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PERSISTENT MONITORING PROBLEM

Start with 1-dimensional mission space Q = [0,L]

AGENT DYNAMICS:

Analysis still holds for: HEXHEHESIINNTHGIES
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PERSISTENT MONITORING PROBLEM

SENSING MODEL: p(x,s) Probability agent at s senses point x

ENVIRONMENT MODEL: Associate to x Uncertainty Function R(x,t)

NET if R(x,t) =0, A(X) < Bp(x, s(1))
xh= {A(x) _Bp(x,s(t)) otherwise

VARl R (1) = f (R,s,t)+noise
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PERSISTENT MONITORING PROBLEM

Partition mission space Q2 = [0,L] into M intervals:

For each interval i = 1,...,M define Uncertainty Function R;(t):

o [0 if R () =0, A < BP (5(t))
(0= {A —BP(s(t)) otherwise

R(S)=1—ﬁ[1— p,(s;) [ P (S)) = P; (i 5))

where P;(s) = joint prob. i is sensed by agents located at s = [s,,...,S\]
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OPTIMAL CONTROL PROBLEM

Determine u,(t),...,uy(t) such that

Uncertainty
measure

Agent dynamics
Uncertainty
dynamics

Sensing model

.s.—u u(t) <1 0<a<s;(t)<b<L
3 () = { if R (t)=0, A <BP(s(t))

A —BP(s(t)) otherwise

Christos G. Cassandras CODES Lab. - Boston University



PERSISTENT MONITORING IN 2D MISSION SPACE

L'Ic»n[inue

L L]
»
cep
@ = = s s oaa = ’ ...... )

T"E;rfbmwn; Agents play a cooperative PACMAN
HIGH uncertainty . Py . T "
Y - game against “uncertainty” which
| NO uncertainty continuously regenerates...

JAVA multi-agent simulator designed to interactively test various
controllers. Polygonal obstacles may be added to the environment.
http://people.bu.edu/cgc/gengyf/density/density.htm
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PERSISTENT MONITORING WITH KNOWN TARGETS
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TRAFFIC NETWORK
CONTROL
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The BU Bridge mess, Boston, MA (simulation using VISSIM)




WHY CAN’T WE IMPROVE TRAFFIC...

-« EVEN IF WE KNOW
THE ACHIEVABLE
OPTIMUMIN A
TRAFFIC NETWORK ?2?2?

Because:

* Not enough controls (traffic lights, tolls, speed fines)
— No chance to unleash the power of feedback!

®,

* Not knowing other drivers’ behavior leads to poor decisions
(a simple game-theoretic fact) %

—> Drivers seek individual (selfish) optimum, } PRICE OF ANARCHY

not system-wide (social) optimum (POA)
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GAME-CHANGING OPPORTUNITY:
CONNECTED AUTOMATED VEHICLES (CAVSs)

NO TRAFFIC LIGHTS, NEVER STOP...

FROM (SELFISH) “DRIVER OPTIMAL”
TO (SOCIAL) “SYSTEM OPTIMAL”

THE “INTERNET OF CARS”
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WHO NEEDS TRAFFIC LIGHTS?

With traffic Ilghts With decentralized control of CAVs
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One of the worst-designed double intersections ever...
(BU Bridge - Commonwealth Ave, Boston)

Christos G. Cassandras CISE - CODES Lab. - Boston University



KEY
TECHNICAL
CHALLENGES




CONTROL AND OPTIMIZATION — CHALLENGES

1. SCALABILITY 7
— mmp Distributed Algorithms

2. DECENTRALIZATION _

3. COMMUNICATION mm) Event-driven (asynchronous)
Algorithms

4. NON-CONVEXITY mm)  Global optimality,
escape local optima

5. EXLOIT DATA mm)  Data-Driven Algorithms
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