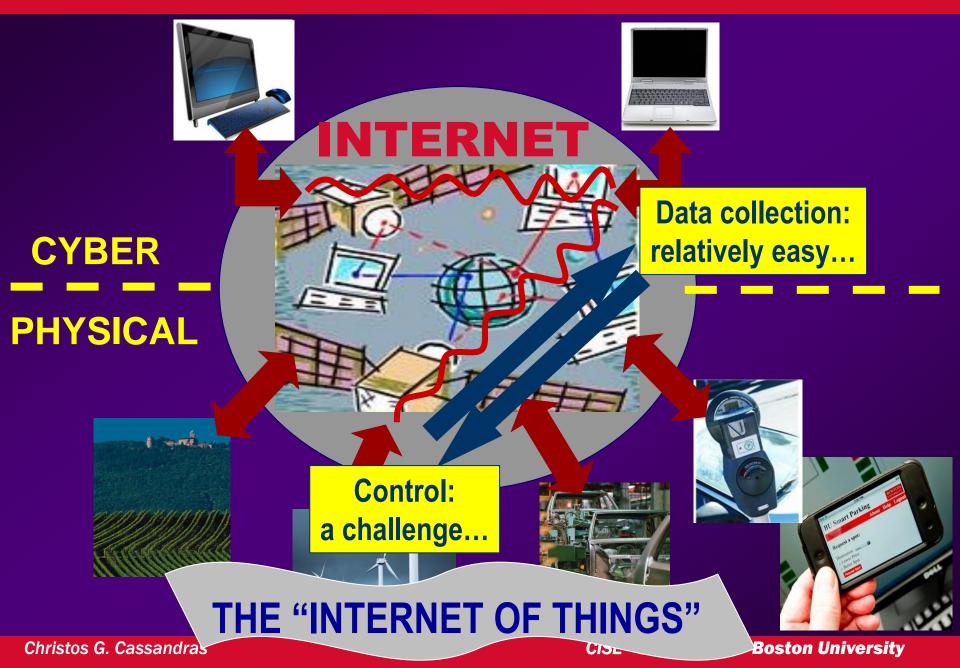
CYBER-PHYSICAL SYSTEMS: MOTIVATION AND CHALLENGES

C. G. Cassandras

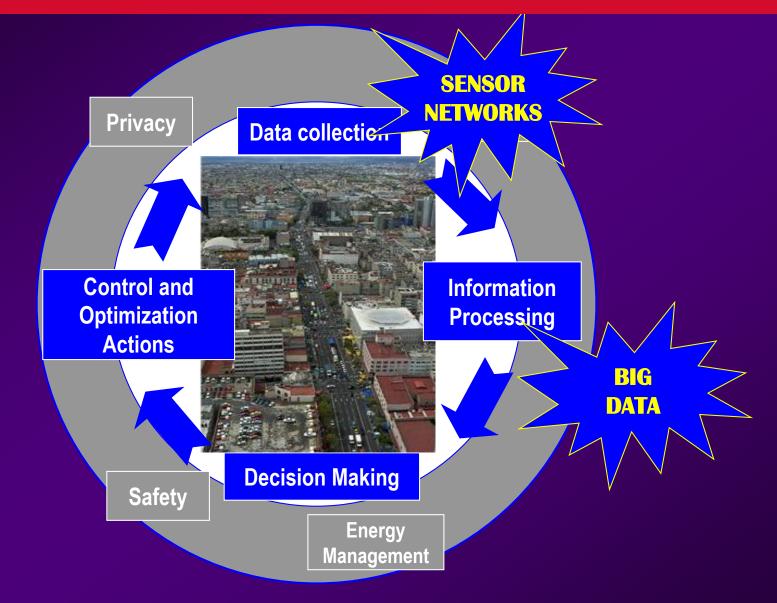
Division of Systems Engineering Center for Information and Systems Engineering Boston University

Christos G. Cassandras — CODES Lab. - Boston University

CYBER-PHYSICAL SYSTEMS



"SMART CITY" AS A CYBER-PHYSICAL SYSTEM



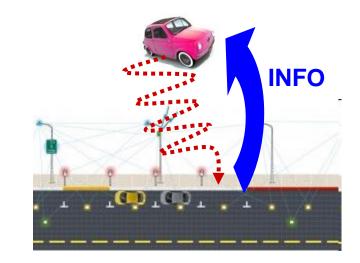
"SMART CITY" AS A CYBER-PHYSICAL SYSTEM PHYSICAL

Christos G. Cassandras

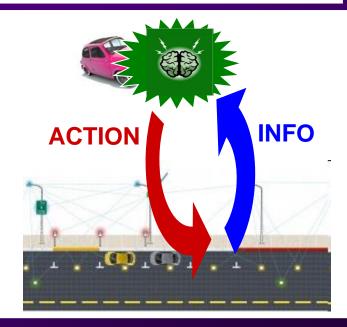
CISE - CODES Lab. - Boston University

WHAT IS REALLY "SMART" ?

COLLECTING DATA IS NOT "SMART" - JUST A NECESSARY STEP TO BEING "SMART"



PROCESSING DATA TO MAKE GOOD DECISIONS IS "SMART"



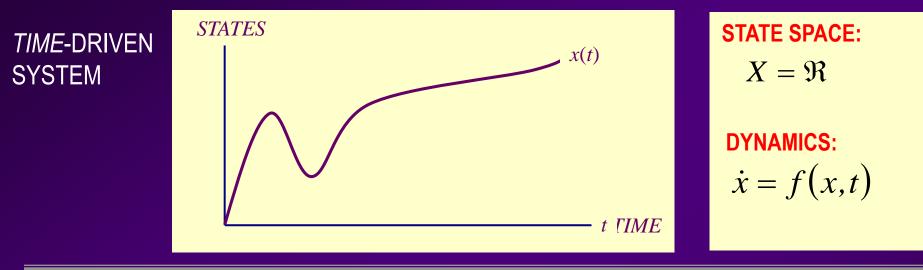
CISE - CODES Lab. - Boston University

Christos G. Cassandras

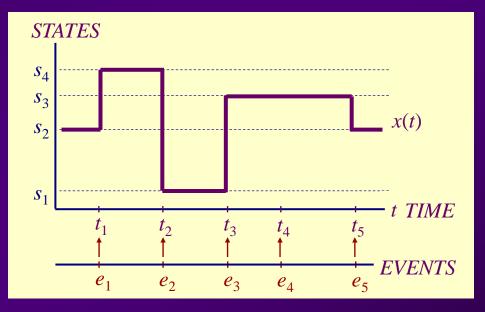


MODELING: TIMED-DRIVEN VS EVENT-DRIVEN

TIME-DRIVEN v EVENT-DRIVEN SYSTEMS



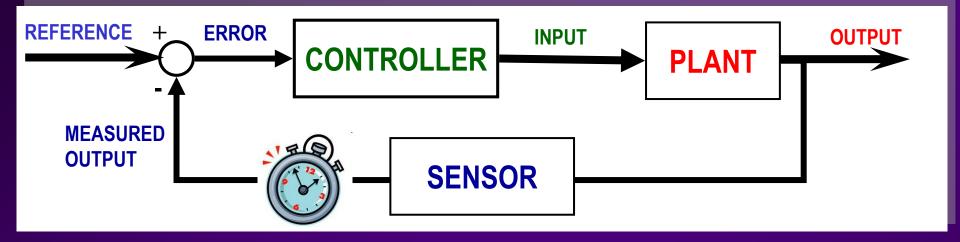
EVENT-DRIVEN SYSTEM



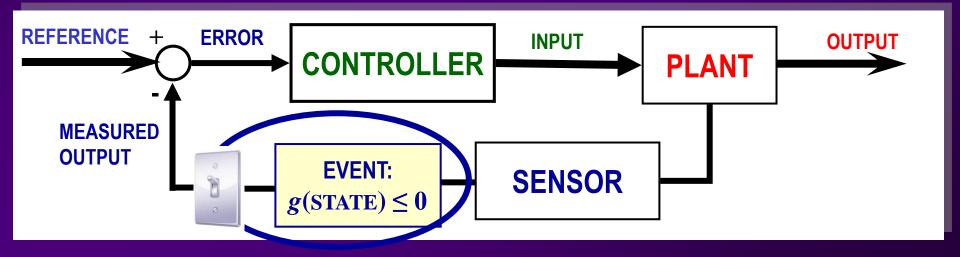
STATE SPACE: $X = \{s_1, s_2, s_3, s_4\}$ DYNAMICS: x' = f(x, e)

Christos G. Cassandras

TIME-DRIVEN v EVENT-DRIVEN CONTROL



EVENT-DRIVEN CONTROL: Act only when needed (or on TIMEOUT) - not based on a clock



Christos G. Cassandras

SELECTED REFERENCES - EVENT-DRIVEN CONTROL

Astrom, K.J., and B. M. Bernhardsson, "Comparison of Riemann and Lebesgue sampling for first order stochastic systems," *Proc. 41st Conf. Decision and Control*, pp. 2011–2016, 2002.
T. Shima, S. Rasmussen, and P. Chandler, "UAV Team Decision and Control using Efficient Collaborative Estimation," *ASME J. of Dynamic Systems, Measurement, and Control*, vol. 129, no. 5, pp. 609–619, 2007.

- Heemels, W. P. M. H., J. H. Sandee, and P. P. J. van den Bosch, "Analysis of event-driven controllers for linear systems," *Intl. J. Control*, 81, pp. 571–590, 2008.

- P. Tabuada, "Event-triggered real-time scheduling of stabilizing control tasks," *IEEE Trans. Autom. Control*, vol. 52, pp. 1680–1685, 2007.

- J. H. Sandee, W. P. M. H. Heemels, S. B. F. Hulsenboom, and P. P. J. van den Bosch, "Analysis and experimental validation of a sensor-based event-driven controller," *Proc. American Control Conf.*, pp. 2867–2874, 2007.

- J. Lunze and D. Lehmann, "A state-feedback approach to event-based control," *Automatica*, 46, pp. 211–215, 2010.

P. Wan and M. D. Lemmon, "Event triggered distributed optimization in sensor networks," *Proc. of 8th ACM/IEEE Intl. Conf. on Information Processing in Sensor Networks*, 2009.
Zhong, M., and Cassandras, C.G., "Asynchronous Distributed Optimization with Event-Driven Communication", *IEEE Trans. on Automatic Control*, AC-55, 12, pp. 2735-2750, 2010.

Christos G. Cassandras

REASONS FOR *EVENT-DRIVEN* MODELS, CONTROL, OPTIMIZATION

- Many systems are naturally Discrete Event Systems (DES) (e.g., Internet)
 - \rightarrow all state transitions are event-driven
- Most of the rest are Hybrid Systems (HS) \rightarrow some state transitions are event-driven
- Many systems are distributed

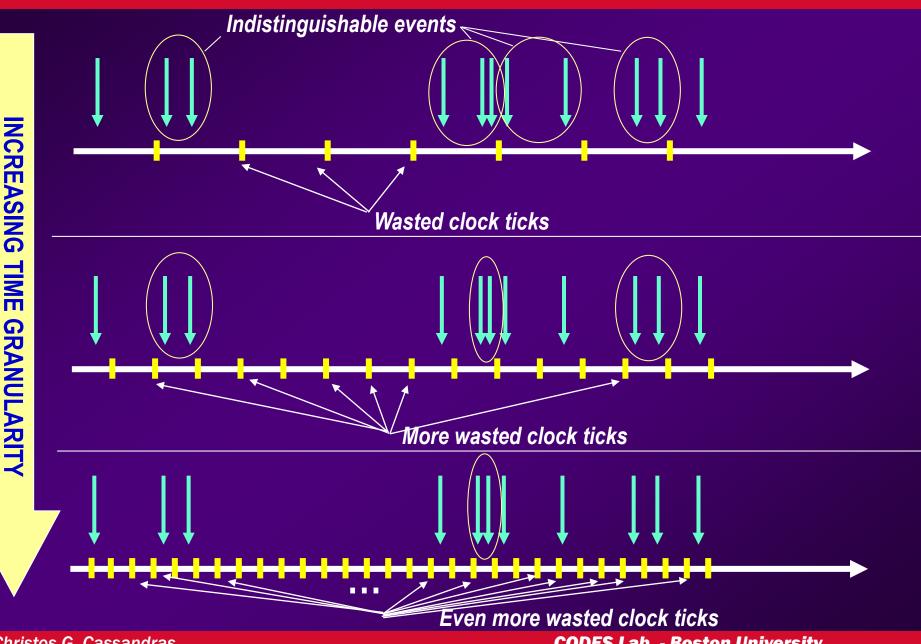
 → components interact asynchronously (through events)

■ Many systems are wirelessly networked → energy constrained → time-driven communication consumes significant energy

REASONS FOR *EVENT-DRIVEN* MODELS, CONTROL, OPTIMIZATION

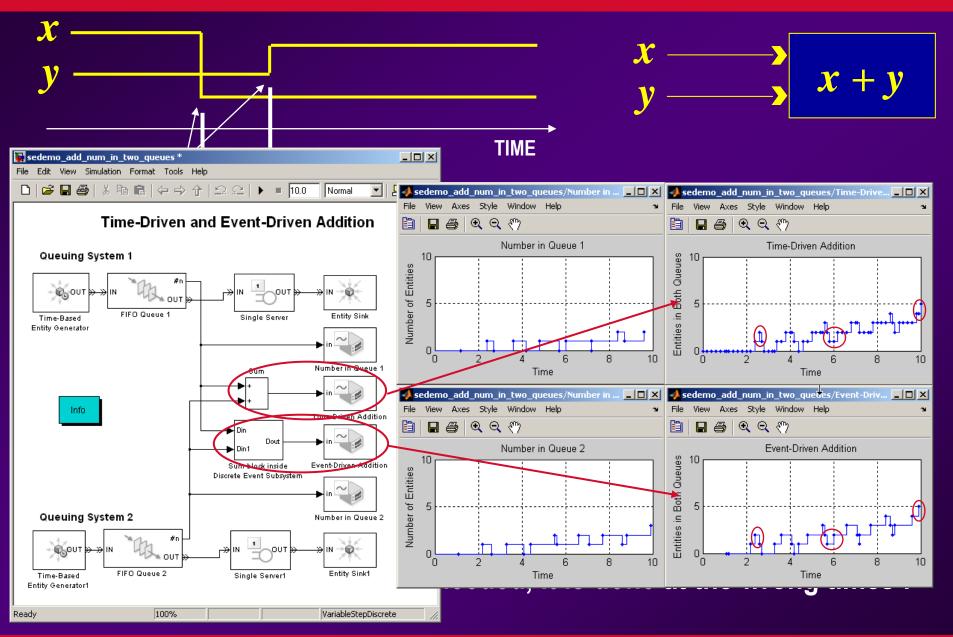
- Many systems are stochastic
 - \rightarrow actions needed in response to random events
- Event-driven methods provide significant advantages in computation and estimation quality
- Time-driven sampling inherently inefficient ("open loop" sampling)
- System performance is often more sensitive to event-driven components than to time-driven components

SYNCHRONOUS v ASYNCHRONOUS BEHAVIOR



Christos G. Cassandras

SYNCHRONOUS v ASYNCHRONOUS COMPUTATION



Christos G. Cassandras

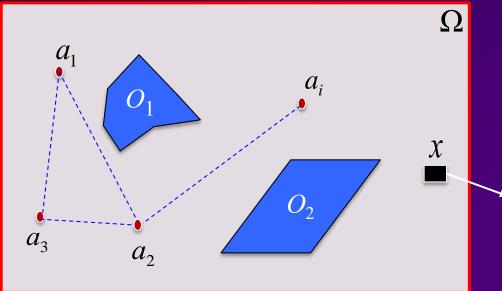
MULTI-AGENT NETWORK SYSTEMS

The multi-agent system framework consists of a team of autonomous agents cooperating to carry out complex tasks within a given environment.

Applications:

- Monitoring (data sources/targets)
- Search and rescue
- Smart buildings
- Intelligent transportation
- Formation flight of Unmanned Aerial Vehicles

MULTI-AGENT OPTIMIZATION: PROBLEM 1



- *s_i*: agent state, *i* = 1,..., *N s*=[*s₁*, ..., *s_N*]
 - *O_j*: obstacle (constraint)
- R(x): property of point x
 - P(x, s): reward function

$$\max_{\mathbf{s}} H(\mathbf{s}) = \int_{\Omega} P(x, \mathbf{s}) R(x) dx$$
$$s_i \in F \subseteq \Omega, i = 1, \cdots, N$$

GOAL: Find the best state vector $s = [s_1, ..., s_N]$ so that agents achieve a maximal reward from interacting with the mission space

Christos G. Cassandras

MULTI-AGENT OPTIMIZATION: PROBLEM 2

$$\prod_{u(t)} Q_{i}$$

$$\prod_{u$$

GOAL: Find the best state trajectories $s_i(t)$, $0 \le t \le T$ so that agents achieve a maximal reward from interacting with the mission space

Christos G. Cassandras

PROBLEMS THAT FIT THIS FRAMEWORK

COVERAGE CONTROL: ACTIVE COOPERATION

Deploy sensors to maximize "event" detection probability - unknown event locations



$$\max_{\mathbf{s}} H(\mathbf{s}) = \int_{\Omega} P(x, \mathbf{s}) R(x) dx$$

Joint event detection probability:

$$P(x, \mathbf{s}) = 1 - \prod_{i=1}^{N} \left[1 - p_i(x, s_i) \right]$$

Event sensing probability

Event density: Prior estimate of event occurrence frequency

Christos G. Cassandras

COVERAGE CONTROL: VORONOI PARTITIONING

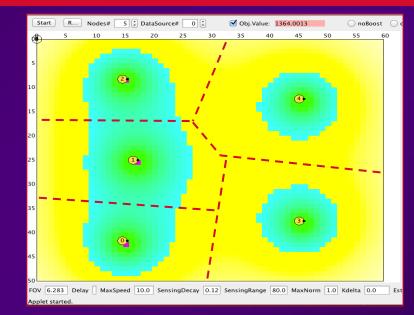
$$\max_{\mathbf{s}} H(\mathbf{s}) = \sum_{i=1}^{N} \int_{V_i} f(\|x - s_i\|) R(x) dx$$

$$V_{i} = \{x \in \Omega : ||x - s_{i}|| \le ||x - s_{j}||, j \neq i$$

 $f(||x-s_i||)$: sensing quality

R(x): event occurrence frequency

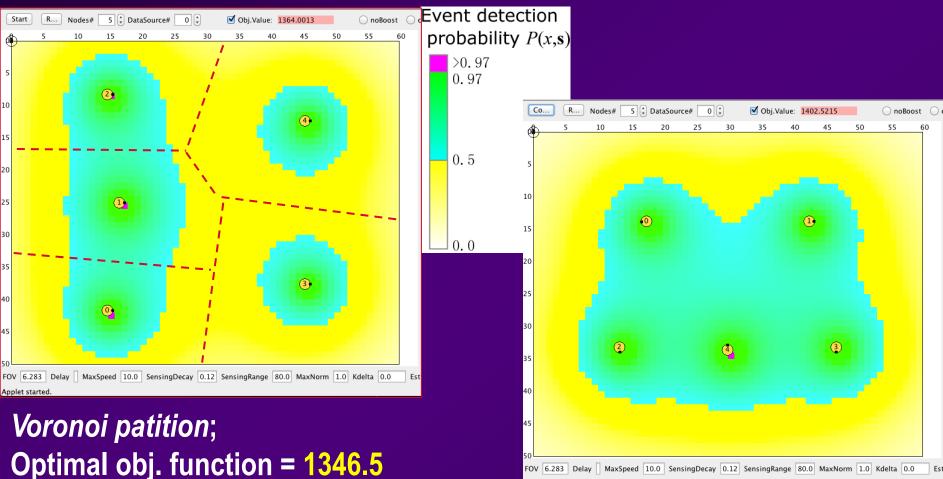
$$\max_{\mathbf{s}} H(\mathbf{s}) = \int_{\Omega} P(x, \mathbf{s}) R(x) dx$$



$$P(x, \mathbf{s}) = \sum_{i=1}^{N} p_i(x, s_i)$$
$$p_i(x, s_i) = \begin{cases} f(\|x - s_i\|) & x \in V_i \\ 0 & x \notin V_i \end{cases}$$

Christos G. Cassandras

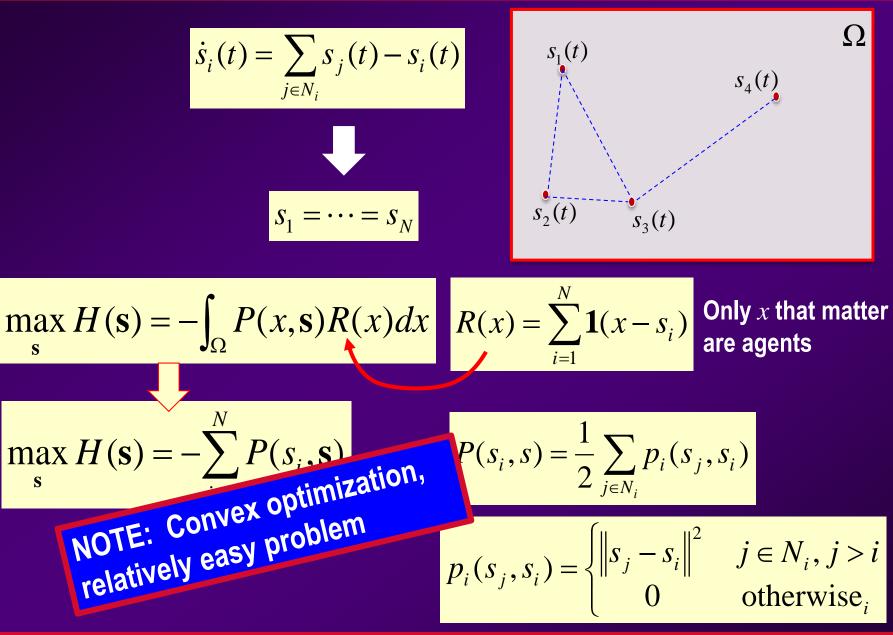
COVERAGE CONTROL: ACTIVE COOPERATION vs PARTITIONING



Applet started

Gradient-based cooperative algorithm; Optimal obj. function = 1388.1

CONSENSUS



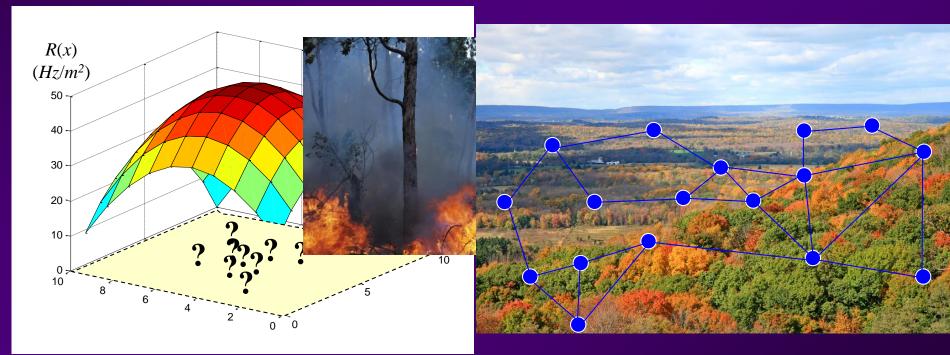
Christos G. Cassandras

COVERAGE CONTROL v PERSISTENT MONITORING

COVERAGE CONTROL:

Deploy sensors to maximize "event" detection probability

- unknown event locations
- event sources may be mobile
- sensors may be mobile



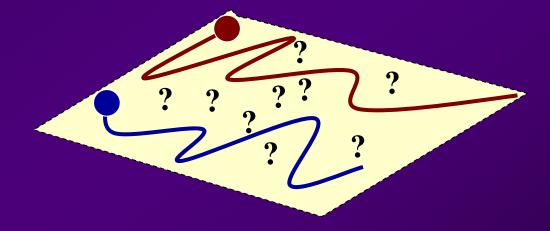
Perceived event density (data sources) over given region (mission space)

Christos G. Cassandras

COVERAGE CONTROL v PERSISTENT MONITORING

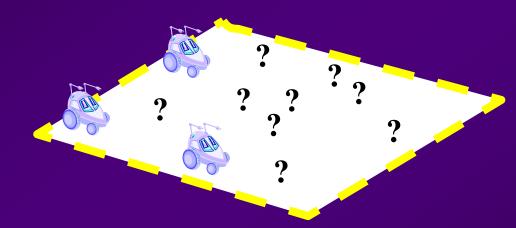
PERSISTENT MONITORING:

- environment cannot be fully covered by stationary team of agents
- all areas of mission space must be visited infinitely often
- minimize some measure of overall uncertainty

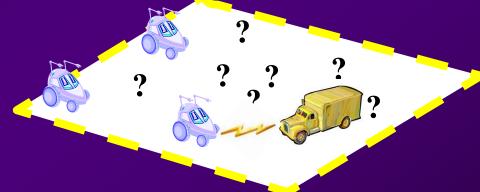


COVERAGE CONTROL + PERSISTENT MONITORING

1. Seek and detect "Data Sources" (or "Targets")



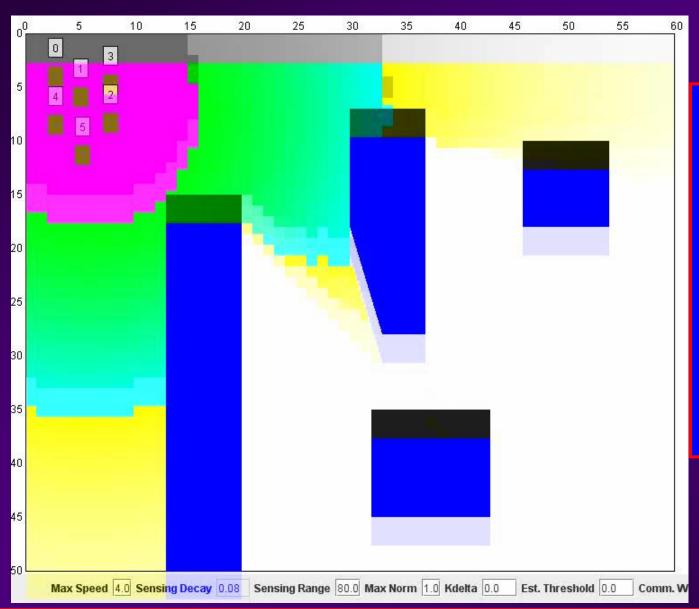
2. Once a Data Source is detected, collect data from it, track it if mobile



3. Continue to seek data sources while collecting data from detected sources

Christos G. Cassandras

REACTING TO EVENT DETECTION



Important to note:

There is no external control causing this behavior. Algorithm includes tracking functionality automatically

Christos G. Cassandras

RELATED WORK

Coverage control:

- J. Cortes, S. Martinez, T. Karatas, and F. Bullo, "Coverage control for mobile sensing networks," IEEE Trans. on Robotics and Automation, 2004.

- M. Zhong and C. G. Cassandras, "Distributed coverage control and data collection with mobile sensor networks," IEEE Trans. Autom. Control, 2011.

- W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, "Coordinated multi-robot exploration," IEEE Trans. On Robotics, 2005.

Persistent monitoring/surveillance:

-I. Rekleitis, V. Lee-Shue, A. New, and H. Choset, "Limited communication, multi-robot team based coverage," Proc. ICRA'04, 2004.

- S. L. Smith, M. Schwager, and D. Rus, "Persistent monitoring of changing environments using robots with limited range sensing," IEEE Trans. on Robotics, 2011.

-P. Hokayem, D. Stipanovic, and M. Spong, "On persistent coverage control," Proc. 46th IEEE Conf. Decision and Control, 2007.

- Y. Elmaliach, N. Agmon, and G. Kaminka, "Multi-robot area patrol under frequency constraints," Proc. ICRA'07, 2007.

- N. Nigam and I. Kroo, "Persistent surveillance using multiple unmanned air vehicles," Proc. IEEE Aerospace Conference, 2008.

- Y. Chen, K. Deng, and C. Belta, "Multi-agent persistent monitoring in stochastic environments with temporal logic constraints," Proc. 51stIEEE Conf. Decision and Control, 2012.

- C. G. Cassandras, X. Lin, and X. C. Ding, "An optimal control approach to the multi-agent persistent monitoring problem," IEEE Trans. Autom. Control, 2013.

Christos G. Cassandras

GOAL: Find the best state trajectories $s_i(t)$, $0 \le t \le T$ so that agents achieve a maximal reward from interacting with the mission space

Need three elements:

1. ENVIRONMENT MODEL

$$\max_{\mathbf{u}(t)} J = \int_0^T \int_{\Omega} P(x, \mathbf{s}(u(t))) R(x) dx dt$$

2. SENSING MODEL

(how agents interact with environment).

3. AGENT MODEL

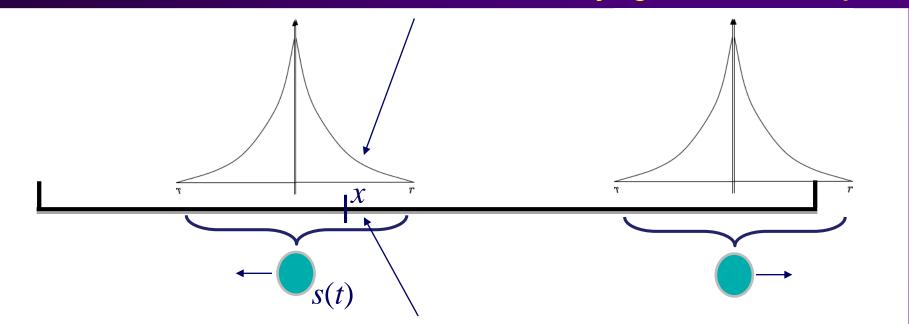
$$\dot{s}_i = f_i(s_i, u_i, t), \ i = 1, \cdots, N$$

Christos G. Cassandras

Start with 1-dimensional mission space $\Omega = [0,L]$

AGENT DYNAMICS:
$$\dot{s}_j = u_j, \ |u_j(t)| \le 1$$
Analysis still holds for: $\dot{s}_j = g_j(s_j) + bu_j, \ |u_j(t)| \le 1$

SENSING MODEL: p(x,s) **Probability agent at** s senses point x



ENVIRONMENT MODEL: Associate to x Uncertainty Function R(x,t)

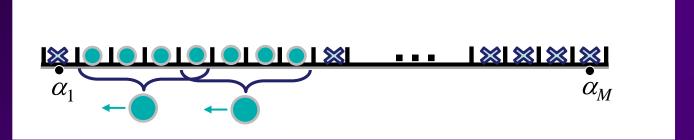
Use:

$$\dot{R}(x,t) = \begin{cases} 0 & \text{if } R(x,t) = 0, A(x) < Bp(x,s(t)) \\ A(x) - Bp(x,s(t)) & \text{otherwise} \end{cases}$$

If x is a known "target": $R_x(t) = f_x(R, s, t) + noise$

Christos G. Cassandras

Partition mission space $\Omega = [0,L]$ into *M* intervals:



For each interval i = 1, ..., M define Uncertainty Function $R_i(t)$:

$$\dot{R}_{i}(t) = \begin{cases} 0 & \text{if } R_{i}(t) = 0, A_{i} < BP_{i}(\mathbf{s}(t)) \\ A_{i} - BP_{i}(\mathbf{s}(t)) & \text{otherwise} \end{cases}$$

$$P_i(\mathbf{s}) = 1 - \prod_{j=1}^{N} \left[1 - p_i(s_j) \right]$$

$$p_i(s_j) \equiv p_j(\alpha_i, s_j)$$

where $P_i(s)$ = joint prob. *i* is sensed by agents located at $s = [s_1, ..., s_N]$

Christos G. Cassandras

OPTIMAL CONTROL PROBLEM

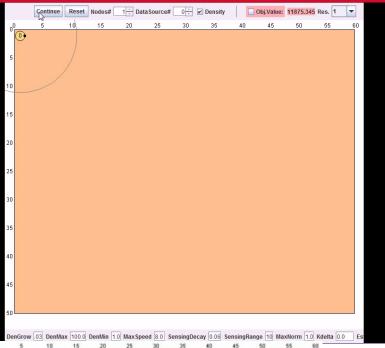
Determine $u_1(t), \dots, u_N(t)$ such that

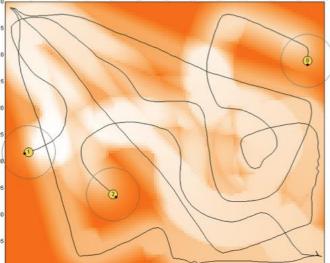
$$p_{j}(x, s_{j}) = \begin{cases} 1 - \frac{|x - s_{j}|}{r_{j}} & \text{if } |x - s_{j}| \le r_{j} \\ 0 & \text{if } |x - s_{j}| > r_{j} \end{cases}$$

Sensing model

Christos G. Cassandras

PERSISTENT MONITORING IN 2D MISSION SPACE





Dark brown: HIGH uncertainty White:

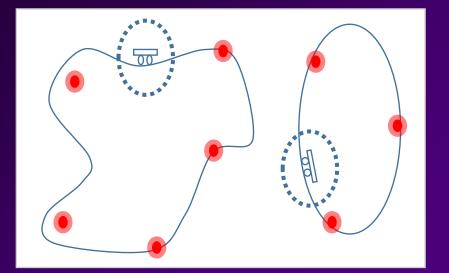
NO uncertainty

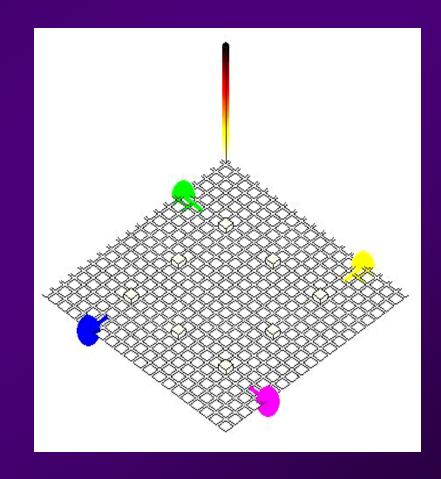
Agents play a cooperative PACMAN game against "uncertainty" which continuously regenerates...

JAVA multi-agent simulator designed to interactively test various controllers. Polygonal obstacles may be added to the environment. http://people.bu.edu/cgc/gengyf/density/density.htm

Christos G. Cassandras

PERSISTENT MONITORING WITH KNOWN TARGETS





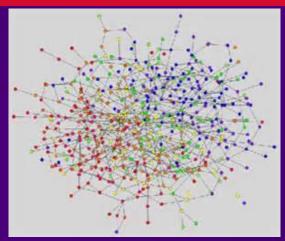
Christos G. Cassandras

TRAFFIC NETWORK CONTROL

The BU Bridge mess, Boston, MA (simulation using VISSIM)

WHY CAN'T WE IMPROVE TRAFFIC...

... EVEN IF WE KNOW THE ACHIEVABLE OPTIMUM IN A TRAFFIC NETWORK ???



Because:

- Not enough controls (traffic lights, tolls, speed fines)
 → No chance to unleash the power of feedback!
- Not knowing other drivers' behavior leads to poor decisions (a simple game-theoretic fact)
 - → Drivers seek individual (selfish) optimum, not system-wide (social) optimum

PRICE OF ANARCHY (POA)

GAME-CHANGING OPPORTUNITY: CONNECTED AUTOMATED VEHICLES (CAVs)

NO TRAFFIC LIGHTS, NEVER STOP...

FROM (SELFISH) "DRIVER OPTIMAL" TO (SOCIAL) "SYSTEM OPTIMAL" TRAFFIC CONTROL

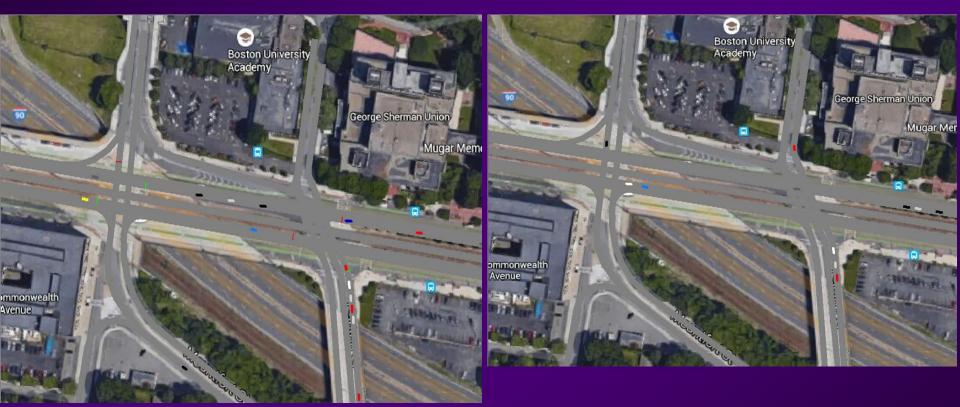
Christos G. Cassandras

CISE - CODES Lab. - Boston University

WHO NEEDS TRAFFIC LIGHTS?

With traffic lights

With decentralized control of CAVs



One of the worst-designed double intersections ever... (BU Bridge – Commonwealth Ave, Boston)

Christos G. Cassandras

CISE - CODES Lab. - Boston University

KEY TECHNICAL CHALLENGES

CONTROL AND OPTIMIZATION – CHALLENGES

- **1. SCALABILITY**
- 2. DECENTRALIZATION

3. COMMUNICATION Event-drive

Event-driven (asynchronous) Algorithms

4. NON-CONVEXITY

Global optimality, escape local optima

5. EXLOIT DATA

Data-Driven Algorithms

Christos G. Cassandras