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Third Lecture

APPROXIMATE DYNAMIC PROGRAMMING I

Approximate Dynamic Programming



0 On-Line Simulation-Based Cost Approximation

e Approximation in Policy Space
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Simulation-Based Approximation in Value Space

L Cost-to-go
Lookahead Minimization Approximation
First ¢ Steps “Future”
< > >
k+4—1
min E gk(xka Uk, wk) + Z gk (I'm Hm (me,), wm) + Jk+€(xk+€)
Uy gt 1o M £—1 i/
Monte Carlo tree search Rollout: Simulation with fixed policy

Parametric approximation at the end
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Rollout: A General Method to Compute Cost-to-Go Approximations

Computes the lookahead functions Ji as the cost-to-go functions of some suboptimal
policy @ = {uo, ..., un—1}, referred to as the base policy or base heuristic
Rollout implementation
@ We may use rollout in one-step or multistep lookahead
@ We may calculate the base policy costs Ji1 (fi(X«, Uk, wi)) needed in
min : E{Qk(Xk, Uk, Wi) + Tt (Fe(Xe, Uk, i) }

Uk € Uy (X

(or its multistep version) analytically or by simulation

@ The base policy costs kst may be calculated approximately over a rolling horizon,
with a terminal cost approximation added at the end

@ Simulation may be used for calculation of needed values of Jk+1

@ The amount of simulation needed may be overwhelming (parallel computation
helps). Simulation greatly simplifies if the problem is deterministic

Major fact about rollout

The rollout policy performs at least as well as the base policy. The improvement is
often DRAMATIC. Relation to policy iteration method of infinite horizon DP
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Example of Rollout: Backgammon

Possible Moves

Av. Score by Av. Score by Av. Score by  Av. Score by
Monte-Carlo Monte-Carlo Monte-Carlo Monte-Carlo
Simulation Simulation Simulation Simulation

The original player (Tesauro, 1996):
@ Involved one-step lookahead

@ Base heuristic was a (relatively crude) backgammon player developed by different
approximate DP methods

@ The program played competitively to the best humans
@ Was very time consuming (lots of parallelization of MC simulation)
@ Subsequent improvements reduced the computation time
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Example of Rollout: AlphaGo

':'i' Google DeepMind
Challenge Match

555
Recent success: A Go program that plays at the level of the best humans

@ Combines many of the ideas that we have discussed with awesome computing
power and many heuristics

@ Multistep lookahead (with Monte Carlo tree search and selective depth - see the
next slide)

@ Rollout with rolling horizon and cost function approximation (computed off-line with
deep neural network)

@ The base policy of the rollout is also computed off-line

@ Massive on-line computation: 1920 CPUs and 280 GPUs, $3000 electric bill per

gamel!
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Stochastic Rollout with Monte Carlo Tree Search

Selective Depth Adaptive |
—n Simulation

Selective Depth
MCTS

' I
States @41 States T2

ROLLOUT

LOOKAHEAD MINIMIZATION

MCTS aims to alleviate the drawbacks of simulation-based stochastic rollout
@ The simulated trajectories may be too long
@ Based on simulation results, some of the controls ux may be clearly inferior

@ Some controls uyk that appear to be promising, may be worth exploring better
through multistep lookahead

@ Uses selective depth lookahead, length of simulation, and discarding of controls
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Using a Parametric Approximation Architecture for Policies

@ Parametrize policies with a parameter vector r = (o, ..., 'v—1):
w(r) = {fio(Xo, 10), - - -, fin—1(Xn—1, IN—1) }

@ Compute off-line the parameters based on some optimization
@ Great advantage: The on-line implementation of the policy is very fast

Possible use: Implement policies obtained by approximation in value space

Cost-to-go
Lookahead Minimization Approximation
DB wkabiptliou First £ Steps “Future”
l k-1 B
"W‘_Tn}w_[ ‘E{W(M u,.mi”; ‘ 9k (@, o (T ), Win ) +L/k_/(“+,)}

@ Compute off-line many state-control pairs (x§, uf), s=1,...,q

@ Train a policy approximation architecture on these pairs. For example by solving
for each k the least squares problem
q
min > |k — ik (k, re)||* + (Regularization term)
-
@ This idea applies more generally. Generate many “good" state-control pairs
(xz, ug), using a software or human “expert" and train in policy space
Bertsekas (M.L.T.) Approximate Dynamic Programming 11/15




Cost Optimization Approach

@ Minimize the cost Jr(,(xo) over r

@ Aim directly for an optimal policy within the parametric class

@ Gradient-based optimization may be a possibility

@ Random search in the space of r is another possibility (cross entropy method)

An important special case: Combination with approximation in value space
@ For a given value space parametrization r = (r, ..., n—1), we define

fuc(Xk, k) = arg  min E{gk(xk» Ukey Wie) + et (Fe(Xk, Ui, Wic), fk)}
Uk € Uk (x¢)

@ Has achieved success in a number of test problems (e.g., tetris)
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An Example: Tetris (Often Used as Testbed in Competitions)

State
/ %4
VA N
Possible Vs : S

actions 7~ K
4 Chosen 5
action N

Possible [ Next
next states E&% state %

@ Number of states > 22%° (for 10 x 20 board)
@ J*(x): optimal score starting from board position x

@ Common choice: 22 features, readily recognized by tetris players as capturing
important aspects of the board position (heights of columns, etc)

@ Long history of successes and failures
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Concluding Remarks

What we covered
@ Approximate DP for finite horizon problems with perfect state information
@ Approximation in value space

@ Approximation in policy space; possibly in combination with approximation in value
space

v

What we did not cover

@ Approximate DP for infinite horizon problems
Lookahead and rollout ideas apply with essentially no change
Special training methods for approximation in value space
Temporal difference methods [e.g., TD(\) and others]; TD()\) is closely related with the
proximal algorithm, but implemented by simulation (see internet videolecture)
@ Imperfect state information problems can be converted to (much more complex)
perfect state information problems. Approximate DP is essential for any kind of
solution

@ A variety of important lookahead/approximation in value space schemes: Model
predictive control, open-loop feedback control, and others

@ Alternative cost criteria: minimax/games, multiplicative/exponential cost, etc

@ Approximation error bound analysis
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Thank youl!
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