Bertsekas (M.L.T.)

A Series of Lectures on

Approximate Dynamic Programming

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Lucca, ltaly
June 2017

Approximate Dynamic Programming

1/29

Second Lecture

APPROXIMATE DYNAMIC PROGRAMMING |

Approximate Dynamic Programming

@ Review of the Exact DP Algorithm
e Approximation in Value Space
e Parametric Cost Approximation

0 Tail Problem Approximation

Bertsekas (M.L.T.) Approximate Dynamic Programming 3/29

Recall the Basic Problem Structure for DP

Discrete-time system

X1 = Fie(Xk, Uk, W), k=0,1,....N—1

@ Xxx: State
@ ux: Control from a constraint set Uk (x«)
@ wj: Disturbance; random parameter with distribution P(wx | X, Uk)

Optimization over Feedback Policies © = {0, 41, - - -, tn—1}, With
Uk = ,Ltk(Xk) S U(Xk)
Cost of a policy starting at initial state xp:

N—1
Jr(x0) = E {gN(XN) + Z gk(XkJLk(Xk)e Wk)}

k=0

Optimal cost function:

J*(Xo) = miﬂ JT.-(Xo)

Bertsekas (M.LT.) Approximate Dynamic Programming 5/29

Recall the Exact DP Algorithm

Computes for all k and states xx: Jx(xx), the opt. cost of tail problem that starts at xx)

Go backwards, k =N —1,...,0, using
In(xn) = gn(xn)
Jk(Xk) = min) E{gk(Xk, Uk, Wk) + Jk+1 (fk(Xk, Uk, Wk))}

Uy € Uy (X

Notes:
@ Jo(x0) = J*(x0): Cost generated at the last step, is equal to the optimal cost
@ Let ux(xx) minimize in the right side above for each xx and k. Then the policy
7 = {ug,...,pun_1} is optimal
@ Potentially ENORMOUS computational requirements
@ |F we knew Jk, 1, the computation of the minimizing ux would be much simpler

Bertsekas (M.LT.) Approximate Dynamic Programming 6/29

One-Step and Multistep Lookahead

One-Step Lookahead
@ Replace Jk1 by an approximation ikt

@ Apply ux that attains the minimum in

in E : s (1 :
Ty 10080 U W)+ o (ot s i)

¢-Step Lookahead

@ At state xx solve the ¢-step DP problem starting at xx and using terminal cost Ji

@ If Uk, fig,q,- -, Hgye—q is @an optimal policy for the £-step problem, apply the first
control uk

Notes
@ Other names used: Rolling or receding horizon control
@ A key issue: How do we choose Jx.?
@ Another issue: How do we deal with the minimization and the computation of E{-}
@ Implementation issues; e.g., tradeoff between on-line vs off-line computation

@ Performance issues; e.g., error bounds (we will not cover)

Bertsekas (M.LT.) Approximate Dynamic Programming 8/29

A Summary of Approximation Possibilities in Value Space

At State xy,
DP minimization
(Could be approximate) First ¢ Steps “Future”
< > >
l k4+£—1
min E 9k (-l'k:: Ug, u/'k) + Z 9k (-T'm,a /hn,(l'm): u)'m,) + Jk+€ (xk+€)
Ul sHig4+15Hg+0—1 ——
Approximations: Computation of Jj:
Replace E{-} with nominal values Simple choices
(certainty equivalent control) Parametric approximation
Limited simulation Tail problem approximation
(Monte Carlo tree search) Rollout
Bertsekas (M.LT.) Approximate Dynamic Programming 9/29

A First-Order Division of Lookahead Choices

Long lookahead ¢ and simple choice of Jx.,
@ Some examples B
Jite(x) =0 (or a constant)
Jire(x) = gn(x)
For problems with a “goal state" use a simple penalty Jx

0 if x is a goal state
>> 1 if x is not a goal state

Jire(x) = {

@ Long lookahead = A lot of DP computation
@ Often must be done off-line

Short lookahead ¢ and sophisticated choice Jx. ¢ ~ Jk¢

@ The lookahead cost function approximates (to within a constant) the optimal
cost-to-go produced by exact DP

@ We will next describe a variety of off-line and on-line approximation approaches

Bertsekas (M.LT.) Approximate Dynamic Programming
pp! i gl

Approximation in Value Space

Cost-to-go
Lookahead Minimization Approximation
First £ Steps “Future”
< > >
k+e—1
min E X g(ar, we,wi) + Y gk(@ms pin (@m), wm) + Tiyo(Trie)
Uk HEe4-15 5 HE4+£—1 ———

Parametric approximation

Bertsekas (M.L.T.) Approximate Dynamic Programming 12/29

Parametric Approximation: Approximation Architectures

@ We approximate Jx(xx) with a function from an approximation architecture, i.e., a

parametric class Jk(x, rx), where rx = (Fik, ..., fmx) is @ vector of “tunable”
scalar weights

@ We use Jx in place of Jx (the optimal cost-to-go function) in a one-step or
multistep lookahead scheme

@ Role of ry: By adjusting rx we can change the “shape” of Jx so that it is “close” to
to the optimal Ji (at least within a constant)

Two key Issues

@ The choice of the parametric class Ji(X«, rx); there is a large variety
@ The method for tuning/adjusting the weights (“training" the architecture)

Bertsekas (M.L.T.) Approximate Dynamic Programming 13/29
pp! i gl

Feature-Based Architectures

Feature extraction

@ A process that maps the state x into a vector ¢ (Xx) = (d1.k(Xk). ..., dmk(Xk)),
called the feature vector associated with xj

@ A feature-based cost approximator has the form
Tk (X, 1) = i (S (Xk), 1)

where ry is a parameter vector and Jy is some function, linear or nonlinear in ri

@ With a well-chosen feature vector ¢« (xx), a good approximation to the cost-to-go is
often provided by linearly weighting the features, i.e.,

Jk(Xes 1) = I (dx(Xkc), 1 Z Ik ®ik(Xk) = redr(Xx)
i=1
y
Linear Cost
State Zx | Feature Extraction | Feature Vector ¢x(k)| pinear |Approximator v} ér(zy)
- Mapping Mapping [

This can be viewed as approximation onto a subspace of basis functions of x, defined
by the features ¢; x(xx)

Bertsekas (M.L.T.) Approximate Dynamic Programming 14/29
pp! i gl

Feature-Based Architectures

@ Any generic basis functions, such as classes of polynomials, wavelets, radial basis
functions, etc, can serve as features

@ In some cases, problem-specific features can be “hand-crafted”

Computer chess example

' '
0 i
i Features: {
0 Material Balance, D
! Mobility, '
cwew ! Safety, etc | Score
nieLy S
o ' Feature Weighting of [t
W8y ' Extraction Features
PR

Position Evaluator
@ Think of state: board position; control: move choice
@ Use a feature-based position evaluator assigning a score to each position
@ Most chess programs use a linear architecture with “manual” choice of weights

@ Some computer programs choose the weights by a least squares fit using lots of
grandmaster play examples

Bertsekas (M.LT.) Approximate Dynamic Programming 15/29

An Example of Architecture Training: Sequential DP Approximation

A common way to train architectures Jk(xk, r¢) in the context of DP

@ We start with Jy = gy and sequentially train going backwards, until k = 1

@ Given a cost-to-go approximation Jx. 1, we use one-step lookahead to construct a
large number of state-cost pairs (x¢, 85), s=1,..., q, where

Bk = min E{g X, U, i) + Jii1 (e (X, u,), rk+1)} s=1,...,q
ueUk(xk

@ We “train” an architecture Ji on the training set (x§, 55), s =1,...,q

Training by least squares/regression
@ We minimize over ri

q

2 =
> " (Je(xE, 1) = B°)° + Al — 7l
s=1

where T is an initial guess for r, and v > 0 is a regularization parameter
@ Special algorithms called incremental gradient methods are typically used for this.

They take advantage of the large sum structure of the cost function

@ For a linear architecture the training problem is a linear least squares problem

Bertsekas (M.LT.) Approximate Dynamic Programming 16/29
pp! i gl

Neural Networks for Constructing Cost-to-Go Approximations Jj

Neural nets can be used in the preceding sequential DP approximation scheme: Train
the stage k neural net using a training set generated with the stage k + 1 neural net

Two ways to view neural networks
@ As nonlinear approximation architectures
@ As linear architectures with automatically constructed features

Focus at the typical stage k and drop the index k for convenience
@ Neural nets are approximation architectures of the form

m
Jix,v,r)=> " ngi(x,v) =r'e(x,v)
i=1
involving two parameter vectors r and v with different roles
@ View ¢(x, v) as a feature vector; view r as a vector of linear weighting parameters
for ¢(x, v)
@ By training v jointly with r, we obtain automatically generated features!

Bertsekas (M.LT.) Approximate Dynamic Programming 17/29

Neural Network with a Single Nonlinear Layer
)

Cost

IApproximation

State x y(x) Ay(z) +b r'¢(x,v)
— -
e
-
State Linear Nonlinear Linear
Encoding Layer Layer Weighting
Parameter Parameter

v =(A,b) r

@ State encoding (could be the identity, could include special features of the state)

@ Linear layer Ay(x) + b [parameters to be determined: v = (A, b)]

@ Nonlinear layer produces m outputs ¢;(x, v) = a((Ay(x) + b),), i=1,....m

@ o is a scalar nonlinear differentiable function; several types have been used
(hyperbolic tangent, logistic, rectified linear unit)

@ Training problem is to use the training set (x°,8°), s =1,...,q, for

A,b, r

2
min <Z rio)+b),) -8 > + (Regularization Term)

@ Solved often with incremental gradient methods (known as backpropagation)
@ Universal approximation theorem: With sufficiently large number of parameters,

arbitrarily complex functions can be closely approximated
Bertsekas (M.LT.) Approximate Dynamic Programming 18/29

Deep Neural Networks

- oz, v)
|—t
- &
Smtf’ Linear Nonlinear Linear Nonlinear Linear
Encoding Layer Layer Layer Layer ‘Weighting

@ More complex NNs are formed by concatenation of multiple layers
@ The outputs of each nonlinear layer become the inputs of the next linear layer
@ Considerable success has been achieved in major contexts

Possible reasons for the success

@ The multilayer network provides a hierarchy of features (each set of features being
a function of the preceding set of features) that can be exploited to specialize the
role of some of the layers

@ We may use matrices A with a special structure that encodes special linear
operations such as convolution

@ When such structures are used, the training problem may become easier,
because the number of parameters in the linear layers is drastically decreased

Bertsekas (M.L.T.) Approximate Dynamic Programming 19/29

Approximation in Q-Factor Space: Using a Simulator Instead of a Model

@ The Q-factor of a state-control pair (xx, ux) at time k is defined by

Qi (Xk, Uk) = E{Qk(X/n Ui, Wic) =+ it (Xk+1)}

where Ji1 is the optimal cost-to-go function for stage k + 1
@ Note that Jk(xx) = minycy, (x,) Qk(Xk, Uk); the DP algorithm is written in terms of Q

@ Consider sequential DP approximation of Q-factor parametric approximations

Qk (Xk, Uk, k) = E{gk(Xk~, U W)+ min Qe (Xeet, U, I’k+1)}
UE Ug1(X41)

@ We obtain Qk(xk, Uk,) by training with many pairs (X2, ug), Be), where 5§ is a
sample of the approximate Q-factor of (x¢, ug). [No need to compute E{-}]

@ Note: No need for a model to obtain ;. Sufficient to have a simulator that
generates state-control-cost-next state samples ((Xk, Uk), (G (Xk, Uk, W), Xk+1))

@ Having computed rk, the one-step lookahead control is obtained on-line as

n.(xx)=arg min Q X, Uy 1
Fix (Xk) 9, ol | k(Xk, U, k)

without the need of a model or expected value calculations

Bertsekas (M.LT.) Approximate Dynamic Programming
pp! i gl

Approximation in Value Space

Cost-to-go
Lookahead Minimization Approximation
First ¢ Steps “Future”
< P -
k4-£—1
min E 9k (:I:ka Uk, U)k) + Z gk (m’nh /lf’m(m'm)7 U)m) + Jk+l (xk—&-é)
Uk skt 1see Bk 40—1)

Tail problem approximation

Bertsekas (M.L.T.) Approximate Dynamic Programming 22/29

Tail Problem Approximation Ideas

Obtain Jk+, as the cost-to-go of a simplified problem
which is solved exactly or approximately

Enforced decomposition of interconnected subsystems
Applies to problems involving a collection / of interconnected subsystems, with each
subsystem i € [applying control uj at time k
@ One-at-a time optimization: Obtain Jkre by optimizing one subsystem at a time,
with controls of other subsystems fixed at nominal values
@ Constraint relaxation: Artificially decouple subsystems by modifying the constraint
set

@ Lagrangean relaxation: Atrtificially decouple subsystems by using Lagrange
multipliers (we will not cover)

Probabilistic approximation
Simplify the probabilistic structure (e.g., replace random variables with deterministic)

V.

Aggregation

Reduce the size of the problem; e.g., by “combining" states into aggregate states
Bertsekas (M.LT.) Approximate Dynamic Programming 23/29

Enforced Decomposition: One Subsystem at a Time

Coupled Subsystems

21 2 3

4 5

@ Let ux = (u},...,uf), with uj, corresponding to the ith subsystem

@ To compute cost-to-go approximation Jk(xk):
Start with subsystem 1, optimize over (u)(, e u}\,_1), with all future controls of other
subsystems i # 1 held at nominal values (&, ..., Uj,_)

Fix the nominal values of subsystem 1 to the optimal sequence thus obtained
Repeat for all subsystems i = 2, ..., n (with intermediate adjustment of the nominal
control values)

@ The scheme applies to both deterministic and stochastic problems

Bertsekas (M.L.T.) Approximate Dynamic Programming 24/29

Example: Optimize the Routes of n Vehicles Through a Road Network

@ Aim: Execute a number of tasks with given values
@ The value of a task is collected only once; a finite horizon is assumed
@ This is a very complex combinatorial problem

@ The single vehicle problem is typically much simpler (e.g., can be solved exactly or
with a high-quality heuristic)

@ Do one-step-lookahead with (suboptimal) optimization of the tail subproblem
one-vehicle-at-a-time. The nominal decisions of the other vehicles can be
determined using some heuristic

Bertsekas (M.L.T.) Approximate Dynamic Programming 25/29

Enforced Decomposition: Constraint Decoupling by Relaxation

Constraint Relaxation

U
UZ
U
1
U1 U
o Letxy = (X,...,x0), uk = (U}, ...,uf), wk = (W}, ..., wy0), with (i, uk, wj)

corresponding to the ith subsystem
@ Assume that the only coupling between subsystems is the control constraint

(U, ...,uf) e U, eg,u.elU, u+ - +uf <b
@ Approximate U with a decomposed constraint U' x ... x U"

@ The problem decomposes into n decoupled subproblems. Let Ji, be the optimal
cost to go functions for the ith decoupled subproblem (obtained by DP off-line)

@ Use one-step lookahead with cost-to-go approximation

Jhit (K1) = Tkt (Xk1) + -+ Tk (X841)

Bertsekas (M.L.T.) Approximate Dynamic Programming 26/29

Example: Production Planning

Constraint Relaxation

2
Ul

U2

1
Uy,

Ul

A work center producing n product types

@ x.,ul,wi: the amounts stored, produced, and demanded of product i at time k
@ State is the stock vector xx = (X}, ..., x), where xi, = xi + uj, — wj
@ U represents the (shared) production capacity of the work center

@ In a more complex version (involving equipment failures), U depends on a random
parameter ax that changes according to a Markov chain

Bertsekas (M.L.T.) Approximate Dynamic Programming 27/29

Probabilistic Approximation

Modify the probability distributions P(wy | xk, wi) to simplify the calculation of Jk,
and/or the lookahead minimization

Certainty equivalent control ideas (inspired by LQG control)
@ Replace uncertain quantities with deterministic nominal values

@ The lookahead and tail problems are deterministic so they can be solved by DP or
by special deterministic methods

@ Use expected values or forecasts to determine nominal values; update policy
when forecasts change (on-line replanning)

@ A variant: Partial certainty equivalence. Fix only some uncertain quantities to
nominal values

@ A generalization: Approximate E{-} by limited simulation

Bertsekas (M.LT.) Approximate Dynamic Programming 28/29

Tail Problem Approximation by Aggregation

Original
System States

Disaggregation
Probabilities

Aggregation
Probabilities
Dy

@ Construct a “smaller" aggregate tail problem by introducing aggregate states

@ Use the exact costs-to-go of the aggregate tail problem as approximate
costs-to-go for the original

Aggregation examples:
@ State discretization-intepolation schemes
@ Grouping of states into subsets, which serve as aggregate states
@ Feature-based discretization; aggregate problem operates in the space of features)

Bertsekas (M.L.T.) Approximate Dynamic Programming 29/29

	Review of the Exact DP Algorithm
	Approximation in Value Space
	Parametric Cost Approximation
	Tail Problem Approximation

