Bertsekas (M.L.T.)

A Series of Lectures on

Approximate Dynamic Programming

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Lucca, ltaly
June 2017

Approximate Dynamic Programming

1/24

Discuss optimization by Dynamic Programming (DP)
and the use of approximations

Purpose: Computational tractability in a broad variety of practical contexts

Bertsekas (M.L.T.) Approximate Dynamic Programming 2/24

The Scope of these Lectures

After an intoduction to exact DP, we will focus on approximate DP for optimal
control under stochastic uncertainty
@ The subject is broad with rich variety of theory/math, algorithms, and applications

@ Applications come from a vast array of areas: control/robotics/planning, operations
research, economics, artificial intelligence, and beyond ...

@ We will concentrate on control of discrete-time systems with a finite number of
stages (a finite horizon), and the expected value criterion

@ We will focus mostly on algorithms ... less on theory and modeling

We will not cover:
@ Infinite horizon problems
@ Imperfect state information and minimax/game problems
@ Simulation-based methods: reinforcement learning, neuro-dynamic programming
@ A series of video lectures on the latter can be found at the author’s web site

Reference: The lectures will follow Chapters 1 and 6 of the author’s book
“Dynamic Programming and Optimal Control," Vol. |, Athena Scientific, 2017

Bertsekas (M.L.T.) Approximate Dynamic Programming 3/24

Lectures Plan

Exact DP
@ The basic problem formulation
@ Some examples
@ The DP algorithm for finite horizon problems with perfect state information
@ Computational limitations; motivation for approximate DP

Approximate DP - |
@ Approximation in value space; limited lookahead
@ Parametric cost approximation, including neural networks
@ Q-factor approximation, model-free approximate DP
@ Problem approximation

Approximate DP - 1|
@ Simulation-based on-line approximation; rollout and Monte Carlo tree search
@ Applications in backgammon and AlphaGo
@ Approximation in policy space

Bertsekas (M.LT.) Approximate Dynamic Programming 4/24

First Lecture

EXACT DYNAMINC PROGRAMMING

Approximate Dynamic Programming

° Basic Problem
e Some Examples
@ The DP Algorithm

° Approximation Ideas

Bertsekas (M.L.T.) Approximate Dynamic Programming 6/24

Basic Problem Structure for DP

Discrete-time system
X1 = Te(Xk, Uk, W), k=0,1,....,N—1
@ xx: State; summarizes past information that is relevant for future optimization at
time k
@ ui: Control; decision to be selected at time k from a given set Ux(xx)

@ w;: Disturbance; random parameter with distribution P(wi | X, Uk)
@ For deterministic problems there is no wy

Cost function that is additive over time

N—1
E {QN(XN) 4 Z Ok (X, Uk, Wk)}

k=0

Perfect state information

The control uk is applied with (exact) knowledge of the state x

Bertsekas (M.L.T.) Approximate Dynamic Programming 8/24
pp! i gl

Optimization over Feedback Policies

wy,

l

uk = pk(@k) System Tk
Thpr = fr(Th, uk, wk)

Hi

@ Feedback policies: Rules that specify the control to apply at each possible state xi
that can occur

@ Major distinction: We minimize over sequences of functions of state

7w = {po, 1, - - -, pn—1}, With ux = pk(Xk) € Uk(Xk) - not sequences of controls
{U07U1,.-.7UN—1} 4
Cost of a policy m = {uo, i1, - - -, un—1+ starting at initial state xo

N1
Jr(X0) = E {QN(XN) + ng (X, pak(XK), Wk)}

k=0

Optimal cost function:
J*(X0) = min J-(xo)

Bertsekas (M.L.T.) Approximate Dynamic Programming 9/24

Scope of DP

Any optimization (deterministic, stochastic, minimax, etc) involving a sequence of
decisions fits the framework

A continuous-state example: Linear-quadratic optimal control
@ Linear discrete-time system: x.1 = Axx + Bux + wx, k=0,...,N—1
@ xx € N": The state at time k
@ ux € R™: The control at time k (no constraints in the classical version)

@ wi € N": The disturbance at time k (wy, . .., wy_1 are independent random
variables with given distribution)

Quadratic Cost Function

N—1
E {x,’VOxN +) (xeQxi + uLFx’uk)}

k=0

where Q and R are positive definite symmetric matrices

Bertsekas (M.LT.) Approximate Dynamic Programming 11/24

Discrete-State Deterministic Scheduling Example
Sk
3

Empty schedule

Find optimal sequence of operations A, B, C, D (A must precede B and C must precede D)

DP Problem Formulation
@ States: Partial schedules; Controls: Stage 0, 1, and 2 decisions

@ DP idea: Break down the problem into smaller pieces (tail subproblems)
@ Start from the last decision and go backwards

Bertsekas (M.L.T.) Approximate Dynamic Programming 12/24

Scheduling Example Algorithm |

Solve the stage 2 subproblems (using the terminal costs)
At each state of stage 2, we record the optimal cost-to-go and the optimal decision J

Bertsekas (M.L.T.) Approximate Dynamic Programming 13/24

Scheduling Example Algorithm I
(s

3
o CL

4

AC
@
5
" @

6
5
Sk

Solve the stage 1 subproblems (using the solution of stage 2 subproblems) J

g

At each state of stage 1, we record the optimal cost-to-go and the optimal decision

Bertsekas (M.L.T.) Approximate Dynamic Programming 14/24

(xnlel
3
/ L
4
D

T @

@
5 3@

Solve the stage 0 subproblem (using the solution of stage 1 subproblems)
@ The stage 0 subproblem is the entire problem
@ The optimal value of the stage 0 subproblem is the optimal cost J* (initial state)
@ Construct the optimal sequence going forward

Bertsekas (M.L.T.) Approximate Dynamic Programming

Principle of Optimality

@ Letn* = {ug, 13, ..., uy_1} be an optimal policy

@ Consider the “tail subproblem" whereby we are at xi at time k and wish to
minimize the “cost-to-go” from time k to time N

N—1
E {gN(XN) + Z 9 (Xm, pim(Xm), Wm)}

m=k
Consider the “tail" {u, prs1, - - - y—1 } Of the optimal policy
X Tail Subproblem
0 k N Time
THE TAIL OF AN OPTIMAL POLICY IS OPTIMAL FOR THE TAIL SUBPROBLEM

DP Algorithm
@ Start with the last tail (stage N — 1) subproblems

@ Solve the stage k tail subproblems, using the optimal costs-to-go of the stage
(k + 1) tail subproblems

@ The optimal value of the stage 0 subproblem is the optimal cost J*(initial state)

@ In the process construct the optimal policy

Bertsekas (M.L.T.) Approximate Dynamic Programming 16/24

Formal Statement of the DP Algorithm

Computes for all k and states xx: Jx(xx): opt. cost of tail problem that starts at xx)

Go backwards, k = N —1,...,0, using
In(xn) = gn(xn)
Jk(X) = min)Ewk{gk(xk7 Uk, W) + Ikt (Fe (X, Uk, Wk))}

Uy € Uy (X

Interpretation: To solve a tail problem that starts at state xj

Minimize the (kth-stage cost + Opt. cost of the tail problem that starts at state xx.1)

Notes:
@ Jo(xo) = J*(x0): Cost generated at the last step, is equal to the optimal cost
@ Let uj(xx) minimize in the right side above for each xx and k. Then the policy
7 = {ug, ..., pun_1} is optimal
@ Proof by induction

Bertsekas (M.L.T.) Approximate Dynamic Programming 18/24
pp! i gl

Practical Difficulties of DP

The curse of dimensionality (too many values of x)

@ In continuous-state problems:

Discretization needed
Exponential growth of the computation with the dimensions of the state and control
spaces

@ In naturally discrete/combinatorial problems: Quick explosion of the number of
states as the search space increases

@ Length of the horizon (what if it is infinite?)

The curse of modeling; we may not know exactly fx and P(Xx | Xk, Uk)

@ |t is often hard to construct an accurate math model of the problem
@ Sometimes a simulator of the system is easier to construct than a model

The problem data may not be known well in advance

@ A family of problems may be addressed. The data of the problem to be solved is
given with little advance notice

@ The problem data may change as the system is controlled — need for on-line
replanning and fast solution

Bertsekas (M.LT.) Approximate Dynamic Programming 19/24
pp! i

Approximation in Value Space

A MAJOR IDEA: Cost Approximation
IF we knew Jy. 1, the computation of Jx would be much simpler
@ Replace Jx.1 by an approximation Jy. 1
@ Apply Uk that attains the minimum in
min E X, Uk, W) -+ J) fie (Xi, Uk, W,
et {gk(Ky Uk, W) k+1 (i (X, Uk, k))}

@ This is called one-step lookahead; an extension is multistep lookahead

A variety of approximation approaches (and combinations thereoff):
@ Parametric cost-to-go approximation: Use as Ji a parametric function Jk(xk, Ic)
(e.g., a neural network), whose parameter ri is “tuned" by some scheme
@ Problem approximation: Use Jx derived from a related but simpler problem

@ Rollout: Use as Jx the cost of some suboptimal policy, which is calculated either
analytically or by simulation

Bertsekas (M.LT.) Approximate Dynamic Programming 21/24

Approximation in Policy Space

ANOTHER MAJOR IDEA: Policy approximation

Parametrize the set of policies by a parameter vector r = (ro, ..., n—1) (€.9., @ neural
network);

m(r) = {fio(Xo, 10), - - -, fin—1(Xn—1, Tn—1) }
Minimize the cost J,()(xo) over r

A related possibility

@ Compute a set of many state-control pairs (x¢, ug), s =1, ..., g, such that for each
s, Ui is a “good" control at state xi

@ Possibly use approximation in value space (or other “expert" scheme)
@ Approximate in policy space by solving for each k the least squares problem

q
q s ~ s 2
min > [|uk — fix(xE, 7o) |
s=1
where fix(X¢, 1) is an “approximation architecture"
@ A link between approximation in value and policy space

Bertsekas (M.LT.) Approximate Dynamic Programming 22/24
pp! i gl

Perspective on Approximate DP

@ The connection of theory and algorithms (convergence, rate of convergence,
complexity, etc) is solid for exact DP and most of optimization

@ By contrast, for approximate DP, the connection of theory and algorithms is fragile

@ Some approximate DP algorithms have been able to solve impressively difficult
problems, yet we often do not fully understand why

@ There are success stories without theory
@ There is theory without success stories

@ The theory available is interesting but may involve some assumptions not always
satisfied in practice

@ The challenge is how to bring to bear the right mix from a broad array of methods
and theoretical ideas

@ Implementation is often an art; there are no guarantees of success

@ There is no safety in love, war, and approximate DP!

Bertsekas (M.L.T.) Approximate Dynamic Programming 23/24
pp! i gl

	Basic Problem
	Some Examples
	The DP Algorithm
	Approximation Ideas

