# A Series of Lectures on Approximate Dynamic Programming

#### Dimitri P. Bertsekas

Laboratory for Information and Decision Systems Massachusetts Institute of Technology

> Lucca, Italy June 2017

#### Our Aim

Discuss optimization by Dynamic Programming (DP) and the use of approximations

Purpose: Computational tractability in a broad variety of practical contexts

# The Scope of these Lectures

# After an intoduction to exact DP, we will focus on approximate DP for optimal control under stochastic uncertainty

- The subject is broad with rich variety of theory/math, algorithms, and applications
- Applications come from a vast array of areas: control/robotics/planning, operations research, economics, artificial intelligence, and beyond ...
- We will concentrate on control of discrete-time systems with a finite number of stages (a finite horizon), and the expected value criterion
- We will focus mostly on algorithms ... less on theory and modeling

#### We will not cover:

- Infinite horizon problems
- Imperfect state information and minimax/game problems
- Simulation-based methods: reinforcement learning, neuro-dynamic programming
- A series of video lectures on the latter can be found at the author's web site

## Reference: The lectures will follow Chapters 1 and 6 of the author's book

"Dynamic Programming and Optimal Control," Vol. I, Athena Scientific, 2017

#### Lectures Plan

#### **Exact DP**

- The basic problem formulation
- Some examples
- The DP algorithm for finite horizon problems with perfect state information
- Computational limitations; motivation for approximate DP

## Approximate DP - I

- Approximation in value space; limited lookahead
- Parametric cost approximation, including neural networks
- Q-factor approximation, model-free approximate DP
- Problem approximation

## Approximate DP - II

- Simulation-based on-line approximation; rollout and Monte Carlo tree search
- Applications in backgammon and AlphaGo
- Approximation in policy space

## First Lecture

# **EXACT DYNAMING PROGRAMMING**

## Outline

- Basic Problem
- Some Examples
- The DP Algorithm
- Approximation Ideas

#### Basic Problem Structure for DP

## Discrete-time system

$$x_{k+1} = f_k(x_k, u_k, w_k), \qquad k = 0, 1, ..., N-1$$

- X<sub>k</sub>: State; summarizes past information that is relevant for future optimization at time k
- $u_k$ : Control; decision to be selected at time k from a given set  $U_k(x_k)$
- $w_k$ : Disturbance; random parameter with distribution  $P(w_k \mid x_k, u_k)$
- For deterministic problems there is no  $w_k$

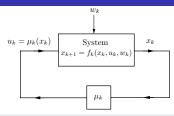
#### Cost function that is additive over time

$$E\left\{g_N(x_N)+\sum_{k=0}^{N-1}g_k(x_k,u_k,w_k)\right\}$$

#### Perfect state information

The control  $u_k$  is applied with (exact) knowledge of the state  $x_k$ 

# Optimization over Feedback Policies



- Feedback policies: Rules that specify the control to apply at each possible state  $x_k$  that can occur
- Major distinction: We minimize over sequences of functions of state  $\pi = \{\mu_0, \mu_1, \dots, \mu_{N-1}\}$ , with  $u_k = \mu_k(x_k) \in U_k(x_k)$  not sequences of controls  $\{u_0, u_1, \dots, u_{N-1}\}$

Cost of a policy  $\pi = \{\mu_0, \mu_1, \dots, \mu_{N-1}\}$  starting at initial state  $x_0$ 

$$J_{\pi}(x_0) = E\left\{g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k)\right\}$$

Optimal cost function:

$$J^*(x_0)=\min_{-}J_{\pi}(x_0)$$

# Scope of DP

Any optimization (deterministic, stochastic, minimax, etc) involving a sequence of decisions fits the framework

## A continuous-state example: Linear-quadratic optimal control

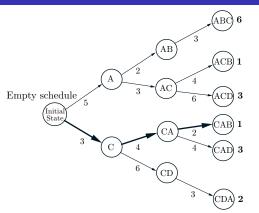
- Linear discrete-time system:  $x_{k+1} = Ax_k + Bu_k + w_k$ , k = 0, ..., N-1
- $x_k \in \Re^n$ : The state at time k
- $u_k \in \Re^m$ : The control at time k (no constraints in the classical version)
- $w_k \in \mathbb{R}^n$ : The disturbance at time k ( $w_0, \dots, w_{N-1}$  are independent random variables with given distribution)

#### **Quadratic Cost Function**

$$E\left\{x_N'Qx_N+\sum_{k=0}^{N-1}\left(x_k'Qx_k+u_k'Ru_k\right)\right\}$$

where Q and R are positive definite symmetric matrices

# Discrete-State Deterministic Scheduling Example

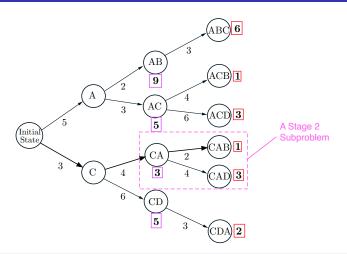


Find optimal sequence of operations A, B, C, D (A must precede B and C must precede D)

#### **DP Problem Formulation**

- States: Partial schedules; Controls: Stage 0, 1, and 2 decisions
- DP idea: Break down the problem into smaller pieces (tail subproblems)
- Start from the last decision and go backwards

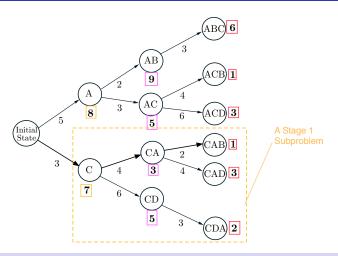
# Scheduling Example Algorithm I



Solve the stage 2 subproblems (using the terminal costs)

At each state of stage 2, we record the optimal cost-to-go and the optimal decision

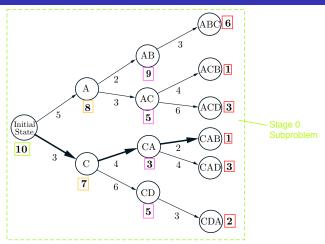
# Scheduling Example Algorithm II



Solve the stage 1 subproblems (using the solution of stage 2 subproblems)

At each state of stage 1, we record the optimal cost-to-go and the optimal decision

# Scheduling Example Algorithm III



## Solve the stage 0 subproblem (using the solution of stage 1 subproblems)

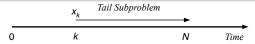
- The stage 0 subproblem is the entire problem
- ullet The optimal value of the stage 0 subproblem is the optimal cost  $J^*$  (initial state)
  - Construct the optimal sequence going forward

# Principle of Optimality

- Let  $\pi^* = \{\mu_0^*, \mu_1^*, \dots, \mu_{N-1}^*\}$  be an optimal policy
- Consider the "tail subproblem" whereby we are at x<sub>k</sub> at time k and wish to minimize the "cost-to-go" from time k to time N

$$E\left\{g_{N}(x_{N})+\sum_{m=k}^{N-1}g_{m}(x_{m},\mu_{m}(x_{m}),w_{m})\right\}$$

Consider the "tail"  $\{\mu_k^*, \mu_{k+1}^*, \dots, \mu_{N-1}^*\}$  of the optimal policy



THE TAIL OF AN OPTIMAL POLICY IS OPTIMAL FOR THE TAIL SUBPROBLEM

## **DP Algorithm**

- Start with the last tail (stage N-1) subproblems
- Solve the stage k tail subproblems, using the optimal costs-to-go of the stage (k + 1) tail subproblems
- The optimal value of the stage 0 subproblem is the optimal cost  $J^*$  (initial state)
- In the process construct the optimal policy

# Formal Statement of the DP Algorithm

Computes for all k and states  $x_k$ :  $J_k(x_k)$ : opt. cost of tail problem that starts at  $x_k$ 

Go backwards,  $k = N - 1, \dots, 0$ , using

$$J_{N}(x_{N}) = g_{N}(x_{N})$$

$$J_{k}(x_{k}) = \min_{u_{k} \in U_{k}(x_{k})} E_{w_{k}} \left\{ g_{k}(x_{k}, u_{k}, w_{k}) + J_{k+1} \left( f_{k}(x_{k}, u_{k}, w_{k}) \right) \right\}$$

Interpretation: To solve a tail problem that starts at state  $x_k$ 

Minimize the (*k*th-stage cost + Opt. cost of the tail problem that starts at state  $x_{k+1}$ )

#### Notes:

- $J_0(x_0) = J^*(x_0)$ : Cost generated at the last step, is equal to the optimal cost
- Let  $\mu_k^*(x_k)$  minimize in the right side above for each  $x_k$  and k. Then the policy  $\pi^* = \{\mu_0^*, \dots, \mu_{N-1}^*\}$  is optimal
- Proof by induction

### Practical Difficulties of DP

## The curse of dimensionality (too many values of $x_k$ )

- In continuous-state problems:
  - Discretization needed
  - Exponential growth of the computation with the dimensions of the state and control spaces
- In naturally discrete/combinatorial problems: Quick explosion of the number of states as the search space increases
- Length of the horizon (what if it is infinite?)

# The curse of modeling; we may not know exactly $f_k$ and $P(x_k \mid x_k, u_k)$

- It is often hard to construct an accurate math model of the problem
- Sometimes a simulator of the system is easier to construct than a model

## The problem data may not be known well in advance

- A family of problems may be addressed. The data of the problem to be solved is given with little advance notice
- The problem data may change as the system is controlled need for on-line replanning and fast solution

# Approximation in Value Space

## A MAJOR IDEA: Cost Approximation

IF we knew  $J_{k+1}$ , the computation of  $J_k$  would be much simpler

- Replace  $J_{k+1}$  by an approximation  $\tilde{J}_{k+1}$
- Apply  $\bar{u}_k$  that attains the minimum in

$$\min_{u_k \in U_k(x_k)} E \Big\{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1} \big( f_k(x_k, u_k, w_k) \big) \Big\}$$

This is called one-step lookahead; an extension is multistep lookahead

## A variety of approximation approaches (and combinations thereoff):

- Parametric cost-to-go approximation: Use as  $\tilde{J}_k$  a parametric function  $\tilde{J}_k(x_k, r_k)$  (e.g., a neural network), whose parameter  $r_k$  is "tuned" by some scheme
- ullet Problem approximation: Use  $ilde{J}_k$  derived from a related but simpler problem
- Rollout: Use as  $\tilde{J}_k$  the cost of some suboptimal policy, which is calculated either analytically or by simulation

# Approximation in Policy Space

# ANOTHER MAJOR IDEA: Policy approximation

Parametrize the set of policies by a parameter vector  $r = (r_0, ..., r_{N-1})$  (e.g., a neural network);

$$\pi(r) = \{\tilde{\mu}_0(x_0, r_0), \dots, \tilde{\mu}_{N-1}(x_{N-1}, r_{N-1})\}$$

Minimize the cost  $J_{\pi(r)}(x_0)$  over r

## A related possibility

- Compute a set of many state-control pairs  $(x_k^s, u_k^s)$ ,  $s = 1, \ldots, q$ , such that for each s,  $u_k^s$  is a "good" control at state  $x_k^s$
- Possibly use approximation in value space (or other "expert" scheme)
- Approximate in policy space by solving for each k the least squares problem

$$\min_{r_k} \sum_{s=1}^{q} \|u_k^s - \tilde{\mu}_k(x_k^s, r_k)\|^2$$

where  $\tilde{\mu}_k(x_k^s, r_k)$  is an "approximation architecture"

A link between approximation in value and policy space

# Perspective on Approximate DP

- The connection of theory and algorithms (convergence, rate of convergence, complexity, etc) is solid for exact DP and most of optimization
- By contrast, for approximate DP, the connection of theory and algorithms is fragile
- Some approximate DP algorithms have been able to solve impressively difficult problems, yet we often do not fully understand why
- There are success stories without theory
- There is theory without success stories
- The theory available is interesting but may involve some assumptions not always satisfied in practice
- The challenge is how to bring to bear the right mix from a broad array of methods and theoretical ideas
- Implementation is often an art; there are no guarantees of success
- There is no safety in love, war, and approximate DP!