
http://cse.lab.imtlucca.it/~bemporad

MODEL Predictive Control
for CYBER-PHYSICAL SYSTEMS

Alberto Bemporad

oCPS	PhD	School	-	Lucca,	June	14,	2017

http://cse.lab.imtlucca.it/~bemporad
http://cse.lab.imtlucca.it/~bemporad
http://www.imtlucca.it/alberto.bemporad
http://www.imtlucca.it/alberto.bemporad

Role of Control in Cyber-physical Systems

2

cyber-system

desired behavior outputactuation

sensing

physical system

m
in

1
2
x

0 Q
x

+
c

0 x

s.t
.

A

x


b

??

What	kind	of	“intelligence”	to	embed	in	the	“cyber”	component	to	make	
the	overall	CPS	behave	autonomously,	robustly,	safely,	and	optimally	?

Model Predictive Control (MPC)

prediction model

3

model-based optimizer

set-points outputsinputs

measurements

r(t) u(t) y(t)

Use	a	dynamical	model	of	the	process	to	predict	its	future	
evolution	and	choose	the	“best”	control	action

optimization
algorithm

m
in

1
2
x

0 Q
x

+
c

0 x

s.t
.

A

x


b

simplified likely

a good

physical system

t+1 t+1+k t+N+1

future

min

N�1X

k=0

kWy

(y

k

� r(t))k2 + kWu

(u

k

� u

ref

(t))k2

s.t. x

k+1

= f(x

k

, u

k

, t)

y

k

= g(x

k

, u

k

, t)

constraints on u

k

, y

k

x

0

= x(t)

Model Predictive Control (MPC)

4

•	Apply	the	first	optimal	move	u(t)= u0*,	throw	the	rest	of	the	sequence	away

predicted outputs

manipulated inputs

t t+k t+N

uk

r(t)

•	At	time	t+1:	Get	new	measurements,	repeat	the	optimization.	And	so	on	…	

yk

past

feedback !

optimization	problem

• Problem	solved	w.r.t.	{u0,...,u N-1}

penalty on
tracking error

penalty on
actuation

•	At	each	time	 t,	find	the	best	control	sequence	over	a	future	horizon	of	N	steps

MPC in industry

5

(Rafal,	Stevens,	AiChE	Journal,	1968)

• The	MPC	concept	for	process	control	dates	back	to	the	60’s

• Research	in	MPC	is	still	very	active	!

(Qin,	Badgewell,	2003)

• MPC	used	in	the	process	industries	since	the	80's

MPC	is	the	standard	for	advanced	control	in	the	process	industry.

(Bauer	&	Craig,	2008)

©SimulateLive.com

MPC in industry

6FEBRUARY 2017 « IEEE CONTROL SYSTEMS MAGAZINE 17

A Survey on Industry Impact and Challenges Thereof

t its 2014 World Congress, the
International Federation of Auto-
matic Control (IFAC) launched

a “pilot” industry committee with
the objective of increasing industry
participation in, and impact from,
IFAC activities. The chair of this com-
mittee is Tariq Samad, with support
from Roger Goodall (Loughborough
University, United Kingdom) and
Serge Boverie (Continental, France) as
cochairs. This committee was estab-
lished as an outcome of an industry
task force led by Roger Goodall in the
last IFAC triennium (2011–2014).

In 2015, the committee surveyed its
members to get their views on the im-
pact of advanced control and challenges
associated with enhancing the impact.
The survey had two questions, and 23
of the 27 committee members (excluding
the chair) responded. The majority of
the committee is either currently with,
or has prior affiliation with, industry; all
others have had substantial industry in-
volvement. To be more exact, 12 of the re-
spondents were affiliated with industry,
ten with academia, and one with gov-
ernment. The committee’s experience
base covers many of the industry sectors
that have benefited from control science
and engineering, including aerospace,
automotive, refining, petrochemicals,
chemicals, metals, mining, biomedical,
finance, and beer brewing. The geo-
graphic distribution is also broad, with
representatives from 21 countries and all
continents except Antarctica. Most of the
members were nominated by IFAC na-
tional member organizations and tech-
nical committees.

Although limited in many ways, the
survey responses should still be of inter-
est to the control community and any
feedback is always welcome, so please
send comments to samad@ieee.org.

Note that an earlier version of this col-
umn is published on the IFAC blog site
http://blog.ifac-control.org/.

SURVEY QUESTION 1:
IMPACT OF SPECIFIC ADVANCED
CONTROL TECHNOLOGIES
First, members were asked about their
perceptions of the industry success (or
lack thereof) of a dozen advanced con-
trol technologies. Proportional-integral-
derivative (PID) control was also included
in the list for calibration purposes. A glos-
sary was included with the survey, listing
topics covered under each technology.
Members were asked to assess the impact
of each of these technologies by selecting
one of the following:

 » High multi-industry impact: Sub-
stantial benefits in each of several
industry sectors; adoption by
many companies in different sec-
tors; standard practice in industry.

 » High single-industry impact: Sub-
stantial benefits in one industry
sector; adoption by many compa-

nies in the sector; standard prac-
tice in the industry.

 » Medium impact: Significant ben-
efits in one or more industry sec-
tors; adoption by one or two
companies; not standard practice.

 » Low impact: A few successful
applications in one or more
companies/industries.

 » No impact: Not aware of any
successful deployed real-world
application.

The results are provided in Table 1.
On the face of it, these results are

disappointing. No advanced control
technology is unanimously acknowl-
edged by industry-aware control ex-
perts as having had high industry
impact—90 years after its invention
(or discovery), we still have noth-
ing that compares with PID! It’s also
concerning that the “crown jewels”
of control theory appear near the bot-
tom of the list. However, the fact that
all the technologies had at least some
positive assessments suggests that the

Digital Object Identifier 10.1109/MCS.2016.2621438
Date of publication: 19 January 2017

Rank and Technology High-Impact Ratings Low- or No-Impact Ratings

PID control 100% 0%

Model predictive control 78% 9%

System identification 61% 9%

Process data analytics 61% 17%

Soft sensing 52% 22%

Fault detection and
identification

50% 18%

Decentralized and/or
coordinated control

48% 30%

Intelligent control 35% 30%

Discrete-event systems 23% 32%

Nonlinear control 22% 35%

Adaptive control 17% 43%

Robust control 13% 43%

Hybrid dynamical systems 13% 43%

TABLE 1 A list of the survey results in order of industry impact as perceived by
the committee members.

A

• Impact	of	advanced	control	technologies	in	industry

(Samad,	IEEE	CS	Magazine,	Feb	2017)

tire	
deflection

suspension
deflection

Automotive applications of MPC

7

Bemporad,	Bernardini,	Borrelli,	Cimini,	Di	Cairano,	Esen,	Giorgetti,	Graf-Plessen,	Hrovat,	Kolmanovsky,	Levijoki,	
Ripaccioli,	Trimboli,	Tseng,	Yanakiev,	...	(2001-present)

Vehicle	dynamics
•traction	control
•active	steering	
•semiactive	suspensions
•autonomous	driving

Powertrain
•direct-inj.	engine	control
•A/F	ratio	control
•magnetic	actuators
•robotized	gearbox	
•power	MGT	in	HEVs
•cabin	heat	control	in	HEVs
•electrical	motors

Most	automotive	OEMs	are	adopting	MPC	solutions	today

Advanced Controls & Optimization

MPC In THE Aeronautic Industry

8

http://www.pw.utc.com/Press/Story/20100527-0100/2010

http://www.pw.utc.com/Press/Story/20100527-0100/2010
http://www.pw.utc.com/Press/Story/20100527-0100/2010

Contents of my lecture

•Model	Predictive	Control	(MPC)	for	CPS’s

•Embedded	quadratic	optimization	algorithms	(inside	the	CPS)

•Hybrid	MPC	=	supervisory	control	of	CPSs	

9

(
u
min

 u(t)  u
max

y
min

 y(t)  y
max

(
x

k+1 = Ax

k

+Bu

k

y

k

= Cx

k

x0 = x(t)

min

z

x

0
N

Px

N

+

N�1X

k=0

x

0
k

Qx

k

+ u

0
k

Ru

k

s.t. u

min

 u

k

 u

max

, k = 0, . . . , N � 1

y

min

 y

k

 y

max

, k = 1, . . . , N

10

Linear MPC

•	Constrained	optimal	control	problem	(quadratic	performance	index):

•	Constraints	to	enforce:

x 2 Rn

u 2 Rm

y 2 Rp

•	Linear	prediction	model:

R = R0 � 0
Q = Q0 ⌫ 0
P = P 0 ⌫ 0

V (x0) = 1
2x

0
0Y x0+ min

z
1
2z

0Hz + x00F
0z

s.t. Gz  W + Sx0

x

k

= A

k

x0 +
k�1X

i=0
A

i

Bu

k�1�i

11

Linear MPC - Constrained case

Convex	QUADRATIC	PROGRAM	(QP)

(quadratic)

(linear)

•Optimization	problem:

•																																																																		is	the	optimization	vector

• 																											and	H,	 F,	 Y,	 G,	 W,	 S	depend	on	weights	Q,	 R,	 P,		
upper	and	lower	bounds	umin,	umax,	 ymin,	ymax,	and	model	matrices	 A,	B,	 C
H = H 0 � 0

z =

2

6664

u0
u1
...

uN�1

3

7775 2 Rs, s , Nm

•State	response:

min
z

1
2z

0Hz + x0(t)F 0z

s.t. Gz  W + Sx(t)

12

Linear MPC algorithm

•	Apply	only	u(t)= u0*,	discard	remaining	optimal	inputs	u1*,...,u N-1*

•	Get	the	solution	z*={u0*,...,u N-1*}	of	the	QP

•Measure	(or	estimate)	the	current	state	x(t)	

	@	each	sampling	step	t:
predicted	outputs

manipulated
inputs

t t+k t+N

uk

r(t)
yk

futurepast

feedback !

min
z

f(z) =
1

2
z0Hz + x0(t)F 0z

rf(z) = Hz + Fx(t) = 0

z⇤ = �H�1Fx(t)

13

Linear MPC - Unconstrained case

Predicted	outputs

Manipulated
Inputs

t t+1 t+N

ut+k

r(t)
yt+k

•	Solution:

•	Minimize	quadratic	function,	no	constraints

z =

2

6664

u0
u1
...

uN�1

3

7775

Unconstrained	linear	MPC	=	linear	state-feedback	!

with	matrix	P		solving	the	Algebraic	Riccati	Equation

J(z, x0) = min
z

x

0
N

Px

N

+
N�1X

k=0
x

0
k

Qx

k

+ u

0
k

Ru

k

14

MPC and Linear Quadratic Regulation (LQR)

•Special	case:

Jacopo	Francesco	
Riccati	(1676	-	1754)

Proof.	Easily	follows	from	Bellman’s	principle	of	optimality	(dynamic	
programming):																		=	optimal	“cost-to-go”	from	time	N	to	∞.

•	(unconstrained)	MPC	=	LQR		(for	any	choice	of	the	prediction	horizon	N)

P = A0PA�A0PB(B0PB +R)�1B0PA+Q

x

0
N

Px

N

lim
t!1

x(t) = 0

lim
t!1

u(t) = 0

V

⇤
(x(t)) = min

N�1X

k=0

x

0
k

Qx

k

+ u

0
k

Ru

k

s.t. x

k+1

= Ax

k

+Bu

k

u

min

 u

k

 u

max

y

min

 Cx

k

 y

max

x

N

= 0

15

Basic convergence properties
Theorem.	Consider	the	linear	system

(Keerthi	and	Gilbert,	1988)	(Bemporad,	Chisci,	Mosca,	1994)

For	general	stability	result	see	 (Lazar,	Heemels,	Weiland,	Bemporad,	IEEE	TAC,	2006)

with	R,Q>0. If	the	optimization	problem	is	feasible	at	time	t=0	then

and	the	constraints	are	satisfied	at	all	time	t≥0,	for	all	R,Q>0

(
x(t+1) = Ax(t) +Bu(t)

y(t) = Cx(t)

and	the	MPC	control	law	based	on	optimizing

“terminal constraint”

e
min

 yk � r(t)  e
max

z =

2

6664

�u0
�u1
...

�uN�1

3

7775

min
z

N�1X

k=0

kWy(yk+1 � r(t))k2 + kW�u�ukk2

[�uk , uk � uk�1], u�1 = u(t� 1)

subj. to umin  uk  umax, k = 0, . . . , N � 1
ymin  yk  ymax, k = 1, . . . , N
�umin  �uk  �umax, k = 0, . . . , N � 1

min
z

J(z, x(t)) = 1
2z

0Hz + [x0(t) r0(t) u0(t� 1)]F 0z

s.t. Gz  W + S

2

4
x(t)
r(t)

u(t� 1)

3

5

16

Linear MPC - Tracking

•	Optimization	problem:

•	Optimal	control	problem	(quadratic	performance	index):

optimization	vector

•	Constraints	on	tracking	errors	can	be	also	included:

kWu(uk � uref(t))k2•	Input	references	can	be	also	handled	by	adding	the	extra	penalty

Convex	
QUADRATIC	
PROGRAM	(QP)

min
�U

N�1X

k=0
kWy(yk+1 � rk+1k2 + kW�u�u(k)k2

17

Anticipative action (a.k.a. “preview”)

•	Reference	not	known	in	advance	(causal): •Future	reference	samples	(partially)	known	in	
advance	(anticipative	action):

use	r(t) use	r(t+k)

rk ⌘ r(t),8k = 0, . . . , N � 1 rk = r(t+ k),8k = 0, . . . , N � 1

Same	idea	also	applies	to	reject	measured	disturbances	entering	the	process

MPC	Toolbox	for	MATLAB,		mpcpreview.m

min
U

N�1X

k=0
kWy(yk � r(t))k2 + kWu(uk � uref(t))k2

(
x

k+1 = A(p(t))x
k

+B

u

(p(t))u
k

+B

v

(p(t))v
k

y

k

= C(p(t))x
k

+D

v

(p(t))v
k

(
u
min

 uk  u
max

y
min

 yk  y
max

min
z

1

2
z0H(p(t))z + ✓0(t)F (p(t))0z

s.t. G(p(t))z  W (p(t)) + S(p(t))✓(t)

Linear Parameter-Varying (LPV) MPC

18

quadratic	
performance	index

constraints	

LTI	prediction	
model

QP

• LPV	models	can	be	obtained	from	linearization	of	nonlinear	models	or	from	
black-box	LPV	system	identification

All	QP	matrices	are	
constructed	on	line

Model depends on time t but does not change in prediction

• Assume	model	is	nonlinear	and	continuous-time dx

dt

= f(x(t), u(t))

x

k+1 =

I + T

s

@f

@x

����
x̄(t),ū(t)

!
x

k

+

T

s

@f

@u

����
x̄(t),ū(t)

!
u

k

+ f

k

Linearization and TIme-Discretization

19

discrete-time
LPV model

A(t) B(t)

f(t) model matrices
depend on
current time t

• Conversion	to	discrete-time	linear	prediction	model

• Linearize	around	a	nominal	state	x(t)	and	input	u(t),	such	as:	

- an	equilibrium
- a	reference	value
- the	current	value

dx

dt

(t+ ⌧) '
@f

@x

����
x̄(t),ū(t)

(x(t+ ⌧)� x̄(t))

+
@f

@u

����
x̄(t),ū(t)

(u(t+ ⌧)� ū(t)) + f(x(t), u(t))

dCA

dt
=

F

V
(CAf � CA)� CAk0e

��E
RT

dT

dt
=

F

V
(Tf � T) +

UA

�CpV
(Tj � T)� �H

�Cp
CAk0e

��E
RT

• T : temperature inside the reactor [K] (state)

• CA : concentration of the reagent in the reactor [kgmol/m

3
] (state)

• Tj : jacket temperature [K] (input)

• Tf : feedstream temperature [K] (measured disturbance)

• CAf : feedstream concentration [kgmol/m

3
] (measured disturbance)

Example: LPV-MPC of a nonlinear CSTR system

•MPC	control	of	a	diabatic	continuous	stirred	tank	reactor	(CSTR)

20

•Objective:	manipulate	Tj	to	regulate	CA	on	desired	set-point

• Process	model	is	nonlinear:

Tj

Tf

CAf

CAT

F

ampccstr_linearization (MPC	Toolbox)

Example: LPV-MPC of a nonlinear CSTR system

•Closed-loop	results

21

Example: LTI-MPC of a nonlinear CSTR system

•Closed-loop	results

22

very bad
tracking !

Embedded QP solvers

23

MPC in a production environment

24

mi
n

1
2
x

0
Q

x

+ c

0
x

s.t
.

A

x

 b

Key	requirements	for	optimization-based	controllers:

1. Speed	(throughput)

a. Execution	time	must	be	less	than	sampling	interval	

b. Also	fast	on	average	(to	free	the	processor	to	execute	other	tasks)

2. Be	able	to	run	on	limited	hardware	(e.g.,	150	MHz)	with	little	memory

3. Robustness	(e.g.,	with	respect	to	numerical	errors)

4.Worst-case	execution	time	must	be	(tightly)	estimated	

5. Code	simple	enough	to	be	validated/verified/certified
(Library-free	C	code,	easily	understandable	by	production	engineers)

Embedded Solvers in industrial Production

25

•Multivariable	MPC	controller	

• Sampling	frequency	=	40	Hz	(=	1	QP	solved	every	25	ms)

• Vehicle	operating	~1	hr/day	for	~360	days/year	on	average

• Controller	may	be	running	on	10	million	vehicles	

 ≈ 520,000,000,000,000 QP/yr

and none of them should fail.

Embedded Linear MPC and Quadratic programming

26

min
z

1

2
z0Hz + x0(t)F 0z +

1

2
x0(t)Y x(t)

s.t. Gz  W + Sx(t)

• Linear	MPC	requires	solving	a	(convex)	Quadratic	Program	(QP)

z =

2

6664

u0
u1
...

uN�1

3

7775

(Beale,	1955)

A	rich	set	of	good	QP	algorithms	is	available	today

Still	a	lot	of	research	is	going	on	to	address	real-time	requirements	...

Solution methods for QP

27

Most	used	algorithms	for	solving	QP	problems:

• active	set	methods

• interior	point	methods

• conjugate	gradient	methods

• gradient	projection	methods	

• alternating	direction	method	of	multipliers	(ADMM)

• 	...

(small/medium	size)

(large	scale)

minz 1
2z

0Hz + x0Fz

s.t. Gz  W + Sx

Quadratic	Program	(QP)

Read	Dimitri’s	books	for	much	more	on	this	!

•Accelerated	gradient	projection	iterations:

wk = zk + �k(zk � zk�1)

zk+1 = PZ

⇣
wk � 1

L⇥f(wk)
⌘

Fast gradient projection method
(Nesterov,	1983)

�k =

(
0 k = 0
k�1
k+2 k > 0

f(zk+1)� f⇤ 
2L

(k +2)2
kz0 � z⇤k2

28

krf(z1)�rf(z2)k  Lkz1 � z2k

•Optimization	problem: min
z2Z

f(z) f : Rs ! R
Z ✓ Rs

• f	convex	and	∇f	Lipschitz	continuous	with	constant	L

• Convergence	rate:

z-1 =z0

min
z

1

2
z0Hz + x0F 0z

s.t. Gz  W + Sx

Fast gradient projection for (dual) QP

wk = yk + �k(yk � yk�1

)

zk = �Kwk � Jx

sk =

1

LGzk � 1

L(Sx+W)

yk+1

= max {yk + sk,0}

•Apply	fast	gradient	method	to	dual	QP:
(Patrinos,	Bemporad,	IEEE	TAC,	2014)

�k =

(
0 k = 0
k�1
k+2 k > 0

29

min
y�0

1

2
y

0
My + (Dx+W)0y

L	=	max	eigenvalue	of	M,	or																																														(Frobenius	norm)L =

vuuut
mX

i,j=1
|Mi,j|2

prepared
off-line

M = GH�1G0

D = GH�1F + S

• Iterations:

y-1 =y0=0

K = H�1G0

J = H�1F 0

Fast gradient projection for (dual) QP
(Patrinos,	Bemporad,	IEEE	TAC,	2014)

30

sik 
1

L
�G, 8i = 1, . . . ,m

�w0
ksk 

1

L
�V

• Termination	criterion	#1:	primal	feasibility

• Termination	criterion	#2:	primal	optimality

f(zk)� f⇤  f(zk)� ⇥(wk) = �w0
kskL  �V

dual function

feasibility tol

optimality tol

• Convergence	rate:

f(zk+1)� f⇤ 
2L

(k +2)2
kz0 � z⇤k2

• Tight	bounds	on	maximum	number	of	iterations
5 7 9 11 13 15

10
1

10
2

10
3

10
4

10
5

Horizon N

I
t
e
r
a
t
io
n
s

theoretical

experimental

min 1
2x

0
Qx+ q

0
x

s.t. `  Ax  u

x

k+1

= �(Q+ ⇢A

T

A)

�1

(⇢A

T

(y

k � z

k

) + q)

z

k+1

= min{max{Ax

k+1

+ y

k

, `}, u}
y

k+1

= y

k

+Ax

k+1 � z

k+1

ADMM method for QP

• Alternating	Directions	Method	of	Multipliers	(ADMM)	for	QP

31

• Scaled	ADMM	iterations:	

(Boyd	et	al.,	2010)

“integral action”
(~40	lines	of	C	code)

(ρy	=	dual	vector) (9	lines	EML	code)

�����
yk

�u0max{yk,0}+ l0max{�yk,0}

�����1
 ✏I

v

k

=
x

k

�c

0
x

k

, kQv

k

k1  ✏

U

,

(
A

i

v

k

 ✏

U

& u

i

< +1
A

i

v

k

� �✏

U

& `

i

> �1

x

k+1

= �(Q+ �A

T

A+ ✏I)

�1

(q � ✏x

k

+ �A

T

(y

k � z

k

))

z

k+1

= min{max{Ax

k+1

+ y

k

, `}, u}
y

k+1

= y

k

+Ax

k+1 � z

k+1

Q � 0
✏ � 0

Regularized ADMM method for QP

32

• Scaled	and	regularized	ADMM	iterations:	

• Infeasibility	detection:	

• Unboundedness	detection:	

ρy	=	dual	vector

(Banjac,	Stellato,	Moehle,	Goulart,	Bemporad,	Boyd,	2017)

https://github.com/oxfordcontrol/osqposQP solver


Q+ ✏I A0

A ��I

�
• Simple,	fast,	robust.	Only	needs	to	factorize																														once

https://github.com/oxfordcontrol/osqp
https://github.com/oxfordcontrol/osqp

y = Pys

min
z

1

2
z0Hz + f 0z

s.t. Gz  W

M = GH�1G0

d = GH�1f +W

min
y

1

2
y0My + d0y

s.t. y � 0

min
ys

1

2
y0s(PMP)ys + d0Pys

s.t. ys � 0

1
p
Mii

Giz 
1

p
Mii

Wi

P = diag

1

p
Mii

!

z⇤ = �H�1((PG)0y⇤s + f)

Scaling (or preconditioning)
• Preconditioning	can	improve	convergence	rate	of	iterative	algorithms	
(in	particular	first-order	methods	are	very	sensitive	to	scaling)

33

•Dual	scaling	(Jacobi	scaling):

scaling

• Equivalent	to	just	scale	constraints	in	primal	problem:

primal QP

scaled dual QP

• Primal	solution:

dual QP

(Giselsson,	Boyd,	2015)

(Bertsekas,	2009)

In	MATLAB:		>> v=A\b % (1 character !)

• Nonnegative	Least	Squares	(NNLS):

v = argmin kAv � bk22

Can we solve QP’s using least squares ?

34

minv kAv � bk22
s.t. v � 0

The	Least	Squares	(LS)	problem	is	probably	the	
most	studied	problem	in	numerical	linear	algebra

(Legendre,	1805) (Gauss,	<=	1809)

Active-set method for Nonnegative Least Squares

•NNLS	algorithm	is	very	simple	(750 chars in Embedded MATLAB)

• The	key	operation	is	to	solve	a	standard	LS	problem	at	each	
iteration	(via	QR,	LDL,	or	Cholesky	factorization)

35

(Lawson,	Hanson,	1974)

3

i) The set X
f

of parameters x for which the problem is
feasible is a polyhedron;

ii) The optimizer function z⇤ : X
f

! Rn is piecewise affine
and continuous over X

f

;
iii) If in addition matrix

h

Q F

0

F Y

i

is symmetric and positive
semidefinite, the value function V ⇤

: X
f

! R associating
with every x 2 X

f

the corresponding optimal value of (3)
is continuous, convex, and piecewise quadratic.

When X ⇢ Rn, the results of Theorem 1 hold by replacing
X

f

with X
f

\X .
An immediate corollary of Theorem 1 is that the explicit

version of the MPC control law u in (4), being the first n
u

components of the optimal vector z(x), is also a continuous
and piecewise-affine state-feedback law defined over a parti-
tion of the set X

f

\X of states into M polyhedral cells

u⇤
(x) =

8

>

<

>

:

K1x+ h1 if E1x  e1

...
...

KMx+ hM if EMx  eM .

(8)

An example of such a partition is reported in Figure 1 of
Section VI-B. The explicit representation (8) has mapped the
MPC law (4) into a lookup table of affine gains, meaning that
for each given x the values computed by solving the QP (3)
on-line and those obtained by evaluating (8) are exactly the
same.

B. Generalization of the MPC formulation
The explicit approach described above can be extended to

the following MPC setting:

min

z

N�1

X

k=0

1

2

(y
k

� rk)
0Q

y

(y
k

� rk) +
1

2

�u0
k

R
�u

�u
k

+ (u
k

� u

r
k)

0R
u

(u
k

� u

r
k)

0
+ ⇢

✏

✏2 (9a)

s.t. x
k+1

= Ax
k

+ B
u

u
k

+ B
v

vk (9b)
x
0

= x0

y
k

= Cx
k

+D
u

u
k

+D
v

vk (9c)
u
k

= u
k�1

+�u
k

, k = 0, . . . , N � 1 (9d)
u�1

= u�1

�u
k

= 0, k = N
u

, . . . , N � 1 (9e)
u

k
min

 u
k

 u

k
max

, k = 0, . . . , N
u

� 1 (9f)
�u

k
min

 �u
k

�u

k
max

, k = 0, . . . , N
u

� 1 (9g)
y

k
min

� ✏V
min

 y
k

 y

k
max

+ ✏V
max

(9h)
k = 0, . . . , N

c

� 1

where R
�u

= R0
�u

> 0, Q
y

= Q0
y

� 0, R
u

= R0
u

� 0, x0

is the current state, vk is a vector of measured disturbances,
y
k

2 Rn

y is the output vector, rk 2 Rn

y its corresponding ref-
erence to be tracked, �u

k

the vector of input increments, u�1

is the command input applied during the previous sampling
interval, ur

k the input reference, uk
min

, uk
max

, �u

k
min

, �u

k
max

,
y

k
min

, yk
max

are bounds, and N , N
u

, N
c

are, respectively, the
prediction, control, and constraint horizons. The extra variable
✏ is introduced to soften output constraints via the relaxation

vectors V
min

, V
max

> 0 of Rn

y and penalized by the (usually
large) weight ⇢

✏

in the cost function (9a).
Everything marked in bold-face in (9) can be treated as a

parameter with respect to which solve the mpQP problem and
obtain the explicit form of the MPC controller. For example,
for a tracking problem with no anticipative action (rk ⌘ r

0

,
8k = 0, . . . , N�1), no measured disturbance, fixed upper and
lower bounds, the explicit solution is a continuous piecewise
affine function of the parameter vector [x0

0
r0

0
u�1

0
]

0.

III. POLYHEDRAL COMPUTATIONS BASED ON NNLS

Finding a solution to the mpQP problem (3) requires solv-
ing several problems of computational geometry, as will be
detailed in Section IV. The goal of this section is to provide
an alternative to existing methods that rely on the availability
of a linear programming (LP) solver, building upon a standard
and easy-to-code solver for the Non-Negative Least-Squares
(NNLS) problem

r⇤ = min

v

kAv � bk2
2

s.t. v � 0,
(10)

where v 2 Rn, A 2 Rm⇥n, b 2 Rm, and r⇤ 2 R is the mini-
mum squared Euclidean norm of the residual w⇤

= Av⇤�b. A
well-known and simple, yet very effective, active-set method
for solving the NNLS problem (10) is described in [19, p.161]
and is summarized in Algorithm 1. At convergence after a
finite number of steps, the algorithm provides the optimal
solution vector v⇤, with v⇤

i

> 0, 8i 2 P , and v⇤
i

= 0,
8i 2 {1, . . . ,m} \ P .

Algorithm 1 NNLS solver [19, p.161]
Input: Matrices A, b.

1) P ;, v 0;
2) w A0

(Av � b);
3) if w � 0 or P = {1, . . . ,m} then go to Step 11;
4) i argmin

i2{1,...,m}\P w
i

, P P [{i};
5) yP argmin

zP k((A0
)P)

0zP � bk2
2

, y{1,...,m}\P 0;
6) if yP � 0 then v y and go to Step 2;
7) j argmin

h2P: y

h

0

n

v

h

v

h

�y

h

o

;
8) v v +

v

j

v

j

�y

j

(y � v);
9) I {h 2 P : v

h

= 0}, P P \ I;
10) go to Step 5;
11) v⇤ v; end.

Output: A vector v⇤ solving (10)

Algorithm 1 can be easily modified to warm-start from a
set P 6= ; of active constraints, see, e.g., [21, Algorithm 2].
Moreover, since solving Step 5 is the most time consum-
ing operation of Algorithm 1, iterative methods have been
proposed for QR factorization [19, Chap. 24] and LDLT

factorization [20] to exploit the incremental changes of the
active set P in Steps 4 and 9.

In the sequel, we will also refer to the unconstrained
problem

r⇤ = min

v

kAv � bk2
2

(11)

minv kAv � bk22
s.t. v � 0

NNLS	algorithm:	
While	maintaining	the	primal	var	v	
feasible,	keep	switching	the	active	
set	until	the	dual	var	w	is	also	feasible

min
z

1
2z

0Qz + c0z

s.t. Gz  g

u , Lz + L�T c

Q = L0L

min
y

1
2

�����

"
M 0

d0

#

y +

"
0
1

#�����

2

2
s.t. y � 0

z⇤ = �
1

1+ d0y⇤
L�1M 0y⇤ �Q�1c

d = b+GQ�1c

M = GL�1

min
u

1
2kuk

2

s.t. Mu  d

Solving QP’s via nonnegative least squares

•Use	NNLS	to	solve	strictly	convex	QP

36

(Bemporad,	2016)

complete the squares

Least	
Distance	
Problem

Nonnegative	Least	Squares

QP

retrieve primal solution

residual	
= 0	?

yes

no

QP problem infeasible

• Fast	and	relatively	simple	active-set	QP	solver.	But	not	very	robust	...

SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL 6

Fig. 1. Worst-case CPU time spent on random QP problems.

Fig. 2. Distance from optimizer and maximum violation of the inequality
constraints on random QP problems.

for each n and compared to the interior-point methods of
QUADPROG and GUROBI. As expected, being Algorithm 1
an active-set method its performance gets worse with respect
to interior point methods, as the number of active-set iterations
increases with m. The maximum constraint violation is about
10

�10.

Finally, we test the sensitivity of the algorithm with respect
to the regularization term ✏. The results, obtained in double
precision by averaging the number of iterations on 500 random
QP problems with n = 30 variables, m = 100 inequality
constraints, � = 10

�5, ⌘ = 10

�6, for cond(Q) = 10, 103,
10

6, are plotted in Figure 4. It is apparent that Algorithm 1
is not very sensitive w.r.t. ✏ up to about 0.1, for which the
proximal iterations start being the dominant factor. Note that
the choice of ✏ affects the practical convergence rate of the
algorithm, from the one of an active-set method (✏ small) to
the one of a proximal-point method (✏ large). We expect that
a thorough theoretical analysis of the asymptotic convergence
of Algorithm 1 would lead to very conservative results, due to
the worst-case exponential complexity of active-set iterations.

Fig. 3. Random sparse QP problems with n variables and 3n inequality
constraints. Algorithm 1 is implemented in interpreted MATLAB code using
sparse linear algebra.

Fig. 4. Average number of iterations as a function of ✏ (500 random QP
problems with n = 30 variables and m = 100 inequality constraints solved
for each cond(Q)).

B. Model predictive control
We consider the AFTI-F16 aircraft control example of [20]

under the settings of the demo aft16.m in the Hybrid
Toolbox for MATLAB [21], with a prediction and control
horizon of N steps and hard input and soft constraints enforced
over the prediction horizon as described in [11, Section IV-
B]. This MPC formulation leads to a QP problem (1) with
n = 2N+1 optimization variables (the extra variable is needed
to soften output constraints, that is weighted with a penalty
of 10

4) and q = 4N + 2(N � 1) constraints. The reference
trajectory is 0 for the constrained output, and switches between
±10 deg for the second output, over a 12 s simulation interval.

We compare Algorithm 1 with ✏ = 10

�6, � = ⌘ = 1.5·10�8

(that is the square root of machine precision in double pre-
cision arithmetic) against: Dantzig’s active set algorithm [1,
Sect. 24-4] applied to solve the dual problem of (1) (coded in
C); ADMM with 3000 iterations and parameter ⇢ = 1 (with a
lower number of iterations ADMM provide solutions of exces-
sively low quality); the interior-point method of GUROBI [22];
QPOASES [3] (coded in C). For a homogeneous comparison,
all computations are done in double-precision arithmetic.
Warm starting from the shifted previous optimal solution is
used. In case of Algorithm 1, warm starting happens in two
ways: the shifted previous optimal sequence of moves is used
as the initial guess z

0

in (7), and the previous optimal active set
P⇤ is used as initial guess for the new active set, by computing
the initial LDLT factorization via two rank-one updates as
described in Section III-D.

The worst-case CPU time encountered during the simulation
for prediction horizons between 2 and 30 is reported in
Figure 5. Such a CPU time excludes the time spent at the initial

• Main	advantage:	primal	Hessian																	can	be	arbitrarily	well	conditioned	!

z

k+1 = arg min
z

1
2z

0
Qz + c

0
z + ✏

2kz � z

k

k22
s.t. Az  b

Gx = g

Q+ ✏I

Solving QP via NNLS: RObust Algorithm

37

proximal-point algorithm,
iterations converge to
the optimal solution

(tradeoff robustness/CPU time)

• Key	idea:	solve	a	sequence	of	regularized	QP	problems
(Bemporad,	2017)

single	precision	arithmetic,	random	QPs
30	vars,	100	constraints	(this	Mac)

SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL 6

Fig. 1. Worst-case CPU time spent on random QP problems.

Fig. 2. Distance from optimizer and maximum violation of the inequality
constraints on random QP problems.

for each n and compared to the interior-point methods of
QUADPROG and GUROBI. As expected, being Algorithm 1
an active-set method its performance gets worse with respect
to interior point methods, as the number of active-set iterations
increases with m. The maximum constraint violation is about
10

�10.

Finally, we test the sensitivity of the algorithm with respect
to the regularization term ✏. The results, obtained in double
precision by averaging the number of iterations on 500 random
QP problems with n = 30 variables, m = 100 inequality
constraints, � = 10

�5, ⌘ = 10

�6, for cond(Q) = 10, 103,
10

6, are plotted in Figure 4. It is apparent that Algorithm 1
is not very sensitive w.r.t. ✏ up to about 0.1, for which the
proximal iterations start being the dominant factor. Note that
the choice of ✏ affects the practical convergence rate of the
algorithm, from the one of an active-set method (✏ small) to
the one of a proximal-point method (✏ large). We expect that
a thorough theoretical analysis of the asymptotic convergence
of Algorithm 1 would lead to very conservative results, due to
the worst-case exponential complexity of active-set iterations.

Fig. 3. Random sparse QP problems with n variables and 3n inequality
constraints. Algorithm 1 is implemented in interpreted MATLAB code using
sparse linear algebra.

Fig. 4. Average number of iterations as a function of ✏ (500 random QP
problems with n = 30 variables and m = 100 inequality constraints solved
for each cond(Q)).

B. Model predictive control
We consider the AFTI-F16 aircraft control example of [20]

under the settings of the demo aft16.m in the Hybrid
Toolbox for MATLAB [21], with a prediction and control
horizon of N steps and hard input and soft constraints enforced
over the prediction horizon as described in [11, Section IV-
B]. This MPC formulation leads to a QP problem (1) with
n = 2N+1 optimization variables (the extra variable is needed
to soften output constraints, that is weighted with a penalty
of 10

4) and q = 4N + 2(N � 1) constraints. The reference
trajectory is 0 for the constrained output, and switches between
±10 deg for the second output, over a 12 s simulation interval.

We compare Algorithm 1 with ✏ = 10

�6, � = ⌘ = 1.5·10�8

(that is the square root of machine precision in double pre-
cision arithmetic) against: Dantzig’s active set algorithm [1,
Sect. 24-4] applied to solve the dual problem of (1) (coded in
C); ADMM with 3000 iterations and parameter ⇢ = 1 (with a
lower number of iterations ADMM provide solutions of exces-
sively low quality); the interior-point method of GUROBI [22];
QPOASES [3] (coded in C). For a homogeneous comparison,
all computations are done in double-precision arithmetic.
Warm starting from the shifted previous optimal solution is
used. In case of Algorithm 1, warm starting happens in two
ways: the shifted previous optimal sequence of moves is used
as the initial guess z

0

in (7), and the previous optimal active set
P⇤ is used as initial guess for the new active set, by computing
the initial LDLT factorization via two rank-one updates as
described in Section III-D.

The worst-case CPU time encountered during the simulation
for prediction horizons between 2 and 30 is reported in
Figure 5. Such a CPU time excludes the time spent at the initial

Prox-NNLS

Prox-NNLS

Prox-NNLS

Embedded MPC without SOLVING QP’s ON LINE

dynamical	model
(based	on	data)

38

embedded	model-based	optimizer

min
z

1

2
z0Qz + c0z

s.t. Az  b

reference outputinput

measurements

r(t) u(t) y(t)

optimization	algorithm

process

m
in

1
2
x

0 Q
x

+
c

0 x

s.t
.

A

x


b

•Can	we	implement	MPC	without	an	embedded	
optimization	solver	? YES !

min
z

1
2
z
0Qz

+ c
0 z

s.t
.

Az
 b

Explicit model predictive control and multiparametric QP

The	multiparametric	solution	of	a	strictly	convex	QP	
is	continuous	and	piecewise	affine	

Corollary:	The	linear	MPC	control	law	is	continuous	&	piecewise	affine	!

(Bemporad,	Morari,	Dua,	Pistikopoulos,	2002)

z⇤ =

2

6664

u⇤0
u⇤1...

u⇤N�1

3

7775

z⇤(x) = argminz 1
2z

0Hz + x0F 0z
s.t. Gz  W + Sx

It’s
 jus

t a
while

loop
!

39

• A	variety	of	mpQP	solvers	is	available

• Most	computations	are	spent	in	operations	on	polyhedra	(=critical	regions)

- checking	emptiness	of	polyhedra
- removal	of	redundant	inequalities
- checking	full-dimensionality	of	polyhedra

multiparametric Quadratic Programming

40

x0•	

(Bemporad	et	al.,	2002)
(Tøndel,	Johansen,	Bemporad,	2003)

(Baotic,	2002)

(Spjøtvold	et	al.,	2006)(Patrinos,	Sarimveis,	2010)

feasibility of primal solution
feasibility of dual solution

Ĝz

⇤(x)  Ŵ + Ŝx

�̃

⇤(x) � 0

(Jones,	Morari,	2006)

• All	such	operations	are	usually	done	via	linear	programming	(LP)

• Can	be	also	performed	via	nonnegative	least	squares	(NNLS) (Bemporad,	2015)

q m Hybrid Tbx MPT NNLS

4 2 0.0174 0.0256 0.0026
4 3 0.0263 0.0356 0.0038
4 4 0.0432 0.0559 0.0061
4 5 0.0650 0.0850 0.0097
4 6 0.0827 0.1105 0.0126
8 2 0.0347 0.0396 0.0050
8 3 0.0583 0.0680 0.0092
8 4 0.0916 0.0999 0.0140
8 5 0.1869 0.2147 0.0322
8 6 0.3177 0.3611 0.0586
12 2 0.0398 0.0387 0.0054
12 3 0.1121 0.1158 0.0191
12 4 0.2067 0.2001 0.0352
12 5 0.6180 0.6428 0.1151
12 6 1.2453 1.3601 0.2426
20 2 0.1029 0.0763 0.0152
20 3 0.3698 0.2905 0.0588
20 4 0.9069 0.7100 0.1617
20 5 2.2978 1.9761 0.4395
20 6 6.1220 6.2518 1.2853

NNLS for solving mpQP problems

• Comparison	of	mpQP	solvers

– Hybrid	Toolbox

– Multiparametric	Toolbox	2.6	(with	default	opts)

– NNLS	-	MPC	Toolbox	(≥R2014b)

41

(Bemporad,	2003)

(Kvasnica,	Grieder,	Baotic,	2004)

(Bemporad,	Morari,	Ricker,	1998-present)

(Herceg,	Kvasnica,	Jones,	Morari,	2013)

Complexity of multiparametric solutions

•The	number	of	regions	depends	(exponentially)	on	the	number	of	
possible	combinations	of	active	constraints	

?
•Explicit	MPC	gets	less	attractive	when	number	
of	regions	grows:	too	much	memory	required,	
too	much	time	to	locate	state	x(t)

•Fast	on-line	QP	solvers	(=implicit	MPC)	may	be	preferable

42

When	is	implicit	preferable	to	explicit	MPC	?

Complexity Certification for Active Set QP solvers
• Consider	a	dual	active-set	QP	solver

43

z⇤(x) = argminz 1
2z

0Hz + x0F 0z
s.t. Gz  W + Sx

(Goldfarb,	Idnani,	1983)

• Key	result:	

(Cimini,	Bemporad,	IEEE	TAC,	2017)

12

�20 �10 0 10 20
�20

�10

0

10

20

✓ 2

�0.3 �0.2 �0.1 0 0.1 0.2 0.3
�2

�1

0

1

2

✓ 2

�1 �0.5 0 0.5 1 1.5 2
�1

0

1

2

✓ 2

�4 �2 0 2 4

�5

0

5

✓1

✓ 2

Figure 1. Results of the explicit certification algorithm: Partition of the
parameter set ⇥ based on the number of iterations required by the GI QP
solver (same color = same number of QP iterations). From top to bottom:
inverted pendulum, DC motor, heat exchange, AFTI 16.

0 100 200 300 400 500 600

3,400

3,600

3,800

4,000

Memory AB:[Occupancy] (kB)

N
um

be
r

of
flo

ps

nmax
imp (15.4 kB) nmax

exp (586.9 kB) nmax
W

point 1

point 2

0 500 1,000 1,500

0.6

0.8

1

·104

Memory AB:[Occupancy] (kB)

N
um

be
r

of
flo

ps

nmax
imp (19.7 kB) nmax

exp (1676.5 kB) nmax
W

point 1

Figure 2. Results of the WCPE-MPC approach for inverted pendulum
problem (top) and heat exchange problem (bottom). Computational complexity
(yellow line) of WCPE-MPC is plotted as function of the memory occupancy
required to store an increasing number of regions, from 1 to nr � 1, along
with the complexity of implicit (blue line) and explicit (red line) MPC, and
the corresponding memory requirements. The best tradeoff points between
memory and worst-case execution time are circled.

REFERENCES

[1] L. Del Re, F. Allgöwer, L. Glielmo, C. Guardiola, and I. Kolmanovsky,
Automotive Model Predictive Control: Models, Methods and Applica-
tions, ser. Lecture Notes in Control and Information Sciences. Springer
London, 2010.

[2] S. Di Cairano, H. Tseng, D. Bernardini, and A. Bemporad, “Vehicle yaw
stability control by coordinating active front steering and differential
braking in the tire sideslip angles domain,” IEEE Trans. Contr. Systems
Technology, vol. 21, no. 4, pp. 1236–1248, July 2013.

[3] S. Di Cairano, D. Yanakiev, A. Bemporad, I. Kolmanovsky, and
D. Hrovat, “Model predictive idle speed control: Design, analysis,
and experimental evaluation,” IEEE Trans. Contr. Systems Technology,
vol. 20, no. 1, pp. 84–97, 2012.

[4] E. N. Hartley and J. M. Maciejowski, “Field programmable gate array
based predictive control system for spacecraft rendezvous in elliptical
orbits,” Optimal Control Applications and Methods, vol. 35, no. 7, pp.
585–607, 2015.

[5] G. Cimini, D. Bernardini, A. Bemporad, and S. Levijoki, “Online model
predictive torque control for permanent magnet synchronous motors,”
in Industrial Technology (ICIT), 2015 IEEE International Conference
on, March 2015, pp. 2308–2313.

[6] S. Vazquez, J. Leon, L. Franquelo, J. Rodriguez, H. Young, A. Marquez,
and P. Zanchetta, “Model predictive control: A review of its applications

x1

x2 0
1

2 3

4

5

We	can	exactly	quantify	how	
many	iterations	(flops)	the	QP	
solver	takes	in	the	worst-case	!

The	number	of	iterations		to	solve	the	QP	is	a	
piecewise	constant	function	of	the	parameter	x	

•What	is	the	worst-case	number	of	iterations	over	x	to	solve	the	QP	?

inv. pend. DC motor nonlin. demo AFTI 16

vars 5 3 6 5

constraints 10 10 18 12

params 9 6 10 10

Explicit MPC

regions 87 67 215 417

max flops 3382 1689 9184 16434

max memory (kb) 55 30 297 430

Implicit MPC

max iters 11 9 13 16

max flops 3809 2082 7747 7807

sqrt 27 9 37 33

max memory (kb) 15 13 20 16

Complexity Certification for Active Set QP solvers

• Examples	(from	MPC	Toolbox):

44

explicit MPC is faster
in the worst-case

online QP is faster
in the worst-case

• It	is	possible	to	combine	explicit	and	on-line	QP	for	best	tradeoff

Hybrid MPC of Cyber-Physical Systems

45

Control of Cyber-Physical Systems

46

What	is	a	good	model	of	a	CPS	for	supervisory	control	purposes	?

cyber system

reference outputactuation

sensing

mi
n

1
2
x

0
Q

x

+ c

0
x

s.t
.

A

x

 b

physical system

supervisory	
controller

47

Hybrid dynamical systems

•Variables	are	discrete-valued

•Dynamics	=	finite	state	machine

•Logic	constraints

•Variables	are	real-valued

•Difference/differential	equations

•Linear	inequality	constraints

x 2 Rn

c

, u 2 Rm

c

x 2 {0,1}nb, u 2 {0,1}mb

0

1 0

1

00 01

11 10

1
0

0

1

x(k)u(k) continuous	
dynamical	
system

hybrid	
dynamical
system

cyber system physical system

48

Piecewise affine systems

Can	approximate	nonlinear	and/or	discontinuous	dynamics	arbitrarily	well

(Sontag	1981)

	state+input	space

x(k+1)

x(k)
C1			C2			C3				C4					C5							C6

49

Discrete Hybrid Automaton (DHA)

x

`

2 {0,1}n` = binary state
u

`

2 {0,1}m` = binary input
�

e

2 {0,1}ne = event variable

x

c

2 Rn

c = real-valued state
u

c

2 Rm

c = real-valued input

i 2 {1, . . . , s} = current mode

(Torrisi,	Bemporad,	2004)

Event	Generator

Finite	State	Machine

Mode	Selector

Switched	Affine	System

mode

discrete
time	
counter

continuous

discrete

x

c

(k +1) =
A

i

x

c

(k) +B

i

u

c

(k) + f

i

i = i(k)
x

`

(k +1) =
f

B

(x
`

(k), u
`

(k), �
e

(k))

50

Logic and inequalities
(Glover	1975,	Williams	1977,	

Hooker	2000)

Finite	State	
Machine

Mode	Selector

Switched	
Affine	System

1

2

s

Event	
Generator

51

Mixed Logical Dynamical (MLD) systems
(Bemporad,	Morari	1999)

Mixed	Logical	Dynamical	(MLD)	systems

HYSDEL (Torrisi,	Bemporad,	2004)

Discrete	Hybrid	Automaton

•	Computationally	oriented	model	(mixed-integer	programming)

•	Suitable	for	MPC	control,	verification,	state	estimation,	fault	detection,

Continuous	and	binary	variables x 2 Rn

c ⇥ {0,1}nb, u 2 Rm

c ⇥ {0,1}mb

y 2 Rp

c ⇥ {0,1}pb, � 2 {0,1}rb, z 2 Rr

c

8
><

>:

x

k+1 = Ax

k

+B1u
k

+B2�
k

+B3z
k

+B5
y

k

= Cx

k

+D1u
k

+D2�
k

+D3z
k

+D5
E2�

k

+ E3z
k

 E4x
k

+ E1u
k

+ E5

convert	logic	propositions	to	
mixed-integer	linear	inequalities

MPC of hybrid systems

Use	a	hybrid	dynamical	model	of	the	process	to	predict	its	future	
evolution	and	choose	the	“best”	control	action

process
model-based	
optimizer

reference output
control
input

measurements

r(t) u(t) y(t)

8
><

>:

x

k+1 = Ax

k

+B1u
k

+B2�
k

+B3z
k

+B5
y

k

= Cx

k

+D1u
k

+D2�
k

+D3z
k

+D5
E2�

k

+ E3z
k

 E4x
k

+ E1u
k

+ E5

52

min
⇠

N�1X

k=0

y

0
k

Qy

k

+ u

0
k

Ru

k

s.t.

8
<

:

x

k+1 = Ax

k

+B1u
k

+B2�
k

+B3z
k

+B5
y

k

= Cx

k

+D1u
k

+D2�
k

+D3z
k

+D5
E2�

k

+ E3z
k

 E4x
k

+ E1u
k

+ E5

min⇠
1

2
⇠0H⇠ + x0(t)F ⇠ +

1

2
x0(t)Y x(t)

s.t. G⇠  W + Sx(t)

⇠ = [u0, . . . , uN�1, �0, . . . , �N�1, z0, . . . , zN�1]

u ⇥ Rmc � {0,1}mb

� ⇥ {0,1}rb
z ⇥ Rrc

� ⇥ R(mc+rc)N � {0,1}(mb+rb)N

53

MIQP	Formulation	of	MPCMIQP formulation of MPC

Mixed	Integer	
Quadratic	Program	
(MIQP)

(Bemporad,	Morari,	1999)

•	Optimization	vector:

vector	ξ	has	both	real	and	binary	values

8Q,R � 0, 8� > 0

lim
t!1

y(t) = r

lim
t!1

u(t) = u

r

lim
t!1

x(t) = x

r

lim
t!1

�(t) = �

r

lim
t!1

z(t) = z

r

54

Closed-loop	ConvergenceClosed-loop convergence

Proof:	Easily	follows	from	standard	Lyapunov	arguments
(Bemporad,	Morari	1999)

Theorem	Let																												be	the	equilibrium	values	corresponding	to	set	point	r.	
Assume	x(0)	is	such	that	the	MPC	problem	is	feasible	at	time	t=0.		

Then																																				the	closed-loop	hybrid	MPC	loop	converges	asymptotically

and	all	constraints	are	fulfilled	at	each	time	t≥0.

(x
r

, u

r

, �

r

, z

r

)

(Lazar,	Heemels,	Weiland,	Bemporad,	2006)

Lyapunov	asymptotic	stability	and	exponential	stability	can	be	
guaranteed	by	choosing	a	proper	terminal	cost	and	constraint	set

dTi
dt

= �↵i(Ti � T
amb

) + ki(u
hot

� u
cold

)

i = 1,2

Example: Room temperature control

Tamb

•	#1=cold	➞	heater=on

•	#2=cold	➞	heater=on	unless	#1=hot

•	A/C	activation	has	similar	rules

heating

air	conditioning

uhot

ucold

T1 T2

continuous	dynamicsdiscrete	dynamics

Hybrid	Toolbox	for	MATLAB,	/demos/hybrid/heatcool.m
55

56

HYSDEL model

>>S=mld('heatcoolmodel',Ts)

>>[XX,TT]=sim(S,x0,U);

get	the	MLD	model	in	MATLAB

simulate	the	MLD	model

min

2X

k=0

kx
2k

� r(t)k1

s.t.

(
x

1k

� 25, k = 1,2

MLD model

57

Hybrid MPC – Temperature control

>>[XX,UU,DD,ZZ,TT]=sim(C,S,r,x0,Tstop);

>>C=hybcon(S,Q,N,limits,refs);

>>refs.x=2; % just weight state #2
>>Q.x=1; % unit weight on state #2
>>Q.rho=Inf; % hard constraints
>>Q.norm=Inf; % infinity norms
>>N=2; % prediction horizon
>>limits.xmin=[25;-Inf];

>> C

Hybrid controller based on MLD model S <heatcoolmodel.hys> [Inf-norm]

 2 state measurement(s)
 0 output reference(s)
 0 input reference(s)
 1 state reference(s)
 0 reference(s) on auxiliary continuous z-variables

 20 optimization variable(s) (8 continuous, 12 binary)
 46 mixed-integer linear inequalities
sampling time = 0.5, MILP solver = 'glpk'

Type "struct(C)" for more details.
>>

58

Mixed-Integer	Program	SolversMixed-Integer Program (MIP) solvers

BUT

•	General	purpose	branch	&	bound	/	branch	&	cut	solvers	available	for	MILP	

				and	MIQP	(CPLEX,	GLPK,	Xpress-MP,	CBC,	Gurobi,	...)

•	No	need	to	reach	global	optimum	(see	proof	of	the	theorem),	although
				performance	deteriorates

http://plato.la.asu.edu/bench.htmlMore	solvers	and	benchmarks:	

•	Mixed-Integer	Programming	is	NP-complete

http://plato.la.asu.edu/bench.html
http://plato.la.asu.edu/bench.html

•QP	algorithm	based	on	NNLS	is	used	to	solve	MIQP	relaxations

min
z

V (z) , 1

2
z0Qz + c0z

s.t. `  Az  u

Gz = g

Āiz 2 {¯̀i, ūi}, i = 1, . . . , q

Q = Q0 � 0

¯̀i  Āiz  ūi

¯̀i = 0, ūi = 1, Āi = [0 . . .0 1 0 . . .0]

Branch & Bound for MIQP (Using NNLS solver for QP)

• Consider	a	MIQP	problem	of	the	form

59

•Binary	constraints	on	z	are	a	special	case:

(Bemporad,	NMPC,	2015)

Āiz 2 {¯̀i, ūi}
8i = 1, . . . , q

Branch & Bound for MIQP (Using NNLS solver for QP)

60

•Branch	and	bound	scheme:

QP0

min
z

V (z) , 1

2
z0Qz + c0z

s.t. `  Az  u

Gz = g

¯̀ Āz  ū

QP
infeasible

?

no yes
MIQP	infeasible

integer
feasible

?

MIQP	
solution
found

start	branching	...

(lucky case)
(lucky case)

(typical case)

yes

no

QP relaxation

min
z

V (z) , 1

2
z0Qz + c0z

s.t. `  Az  u

Gz = g

Aiz = ¯̀i
¯̀j  Ājz  ūj, j 6= i min

z
V (z) , 1

2
z0Qz + c0z

s.t. `  Az  u

Gz = g

Aiz = ūi
¯̀j  Ājz  ūj, j 6= i

Āiz
¯̀i+ūi

2 ¯̀i ūi

Branch & Bound for MIQP (Using NNLS solver for QP)

61

•Branching:	pick	up	index	i	such	that								is	closest	to		

QP0

min
z

V (z) , 1

2
z0Qz + c0z

s.t. `  Az  u

Gz = g

¯̀ Āz  ū

QP1 QP2

•Solve	two	new	QP	problems:

x

Warm	start	from	previous	solution	
of	QP0	helps	solving	QP1,	QP2

update	
upper	bound

on	MIQP	
solution

V0 � V ⇤

Branch & Bound for MIQP (Using NNLS solver for QP)

62

QP0

QP1 QP2

QP
infeasible

?

no

yes

integer
feasible

?

keep	branching	...

no

stop	branching
on	subtree

yes

MIQP via NNLS: Numerical results

63

QP	algorithm	in	compiled	Embedded	MATLAB	code,		B&B	in	interpreted	MATLAB	code.	
CPU	time	measured	on	this	Mac

(NNLS
LDL

in the table) of

�MP`
d`P`

MPu duPu
N f

� 
�M

0
P`

M

0
Pu

N

0

d

0
`P`

d

0
uPu

f

0

�

recursively as described in (Bemporad, 2015b) when the

dimension of vector
h

y`
yu
⌫

i
is smaller or equal than n, and,

for improved numerical robustness, QR factorization in
case more than n elements must be optimized in Prob-
lem (4). As an alternative, we purely updated the QR
factorization of the same matrix (NNLS

QR

in the table)
recursively as described in (Lawson and Hanson, 1974,
Chap. 24, Method 1).

n m q NNLSLDL NNLSQR GUROBI CPLEX
10 5 2 2.3 1.2 1.4 8.0
10 100 2 5.7 3.3 6.1 31.4
50 25 5 4.2 6.1 14.1 30.1
50 200 10 68.8 104.4 114.6 294.1

100 50 2 4.6 10.2 37.2 69.2
100 200 15 137.5 365.7 259.8 547.8
150 100 5 15.6 49.2 157.2 260.1
150 300 20 1174.4 3970.4 1296.1 2123.9

Table 1. Worst-case CPU time (ms) on random
MIQP problems over 20 instances for each

combination of n, m, q.

It is apparent that on such a set of random MIQP
problems, Algorithm 2 performs comparably well with
respect to the commercial solvers GUROBI and CPLEX,
especially when the number q of binary constraints is small
compared to n and m, probably due to the pure B&B
nature of Algorithm 2.

The results shown in Table 2 are obtained, under the same
conditions, on purely binary quadratic programs (n = q,
m = 5n). When turning the presolver on, in GUROBI and
CPLEX the results remain rather similar.

n m q NNLSLDL NNLSQR GUROBI CPLEX
2 10 2 5.1 4.0 0.7 8.4
4 20 4 8.9 4.3 4.5 16.7
8 40 8 19.2 18.0 37.1 14.7

12 60 12 59.7 57.8 82.3 47.9
20 100 20 483.5 457.7 566.8 99.6
25 250 25 110.4 93.3 1054.4 169.4
30 150 30 1645.4 1415.8 2156.2 184.5

Table 2. Worst-case CPU time (ms) for random
binary QP problems with n variables and 5m
constraints, over 20 instances for each value of

n and the corresponding m, q.

5.2 Hybrid MPC problem

In order to test Algorithm 2 in a hybrid MPC problem (2)–
(3), we consider the hybrid control problem described
in (Bemporad and Morari, 1999, Example 5.1) with all
zero weights except a unit weight on the output of the
system (these are the settings of the demo bm99sim.m in
the Hybrid Toolbox for MATLAB (Bemporad, 2003)) and
a prediction horizon T between 2 and 10.

The regularization term 10�4
I was added on the resulting

Hessian matrix Q to make the resulting MIQP’s positive
definite. This induces a small di↵erence in the input and

N NNLSLDL NNLSQR GUROBI CPLEX
2 2.2 2.3 1.2 3.0
3 3.4 3.9 2.0 6.5
4 5.0 6.5 2.6 8.1
5 7.6 9.8 3.7 9.0
6 12.3 17.7 4.3 11.0
7 20.5 30.5 5.8 13.1
8 28.9 47.1 7.3 17.3
9 38.8 62.5 9.5 18.9

10 55.4 98.2 10.9 22.4

Table 3. Hybrid MPC problem: CPU time
(ms) per sampling step for di↵erent prediction

horizons N

output trajectories, however the norm of the di↵erence
between the entire trajectories smaller than 0.001. We
compare Algorithm 2 with preconditioning (16) against
GUROBI and CPLEX with presolvers enabled. The results
are reported in Table 3. For T = 10, the MIQP problem
has n = 40, q = 10 (i.e., 30 continuous variables and
10 binary variables) and m = 160 linear inequalities.
We observed that disabling presolvers in GUROBI and
CPLEX sometimes speeds up sometimes slows down the
solver.

6. CONCLUSIONS

In this paper we have proposed a new MIQP solver based
on B&B that is tailored to embedded hybrid MPC appli-
cations. The approach extends an active set method re-
cently developed by the author to solve QP relaxations as
nonnegative least-squares problems. While the presented
approach was shown e↵ective in simulations compared to
reference commercial solvers, current research is devoted
to combine hybrid models and MIQP solution methods for
reaching even higher degrees of e↵ectiveness.

REFERENCES

Axehill, D. and Hansson, A. (2006). A mixed integer dual
quadratic programming algorithm tailored for MPC. In
Proc. 45th IEEE Conference on Decision and Control,
5693–5698. San Diego, CA, USA.

Bemporad, A. (2003). Hybrid Toolbox – User’s
Guide. http://cse.lab.imtlucca.it/

~

bemporad/

hybrid/toolbox.
Bemporad, A. (2015a). A multiparametric quadratic
programming algorithm with polyhedral computations
based on nonnegative least squares. IEEE Trans. Auto-
matic Control. In press.

Bemporad, A. (2015b). A quadratic programming algo-
rithm based on nonnegative least squares with appli-
cations to embedded model predictive control. IEEE
Trans. Automatic Control. Conditionally accepted for
publication.

Bemporad, A. and Morari, M. (1999). Control of systems
integrating logic, dynamics, and constraints. Automat-
ica, 35(3), 407–427.

Bertsekas, D. (2009). Convex Optimization Theory.
Athena Scientific.

Bierlaire, M., Toint, P., and Tuyttens, D. (1991). On
iterative algorithms for linear ls problems with bound
constraints. Linear Algebra and Its Applications, 143,
111–143.

n	=	#	variables,	m	=	#	inequality	constraints,	no	equalities,	q	=	#	binary	constraints

•Worst-case	CPU	time	on	random	MIQP	problems:

NNLSLDL	=	recursive	LDL	factorization	used	to	solve	least-square	problems	in	QP	solver
NNLSQR	=	recursive	QR	factorization	used	instead	(numerically	more	robust)

(Bemporad,	NMPC	2015)

min
z

V (z) , 1

2
z0Qz + c0z

s.t. `  Az  u

Aeqz = beq

Āiz 2 {¯̀i, ūi}, i = 1, . . . , p

¯̀i  Āiz  ūi

Fast gradient projection for MIQP

•MIQP	problem

64

•Use	branch	&	bound,	relax	binary	constraints	to

special case:
binary constraints zi∊{0,1}

constraint is relaxed

constraint is fixed

constraint is ignored

(Naik,	Bemporad,	2016)

¯Aiz  ūi ! yik+1

= max

n

yik + sik,0
o

Āiz = ūi ! yik+1 = yik + sik

Āiz = ¯̀i ! yk+1
i = 0

•Only	projection	changes	from	one	QP	relaxation	to	another:

yi≥0

yi≷0

yi=0

Fast gradient projection for MIQP

•Numerical	results	(time	in	ms):

65

First we consider the hybrid vehicle example described
in (Takapoui et al., 2016), that consists of the combination
of a battery, an electric motor/generator, and an engine.
For a given power demand P des

t

at time t = 0, . . . , T � 1,
the objective is to plan the battery power P batt

t

and engine
power P eng

t

for the time interval t = 0, . . . , T�1, such that
P batt

t

+ P eng

t

� P des

t

. Let E
t

be the energy of the battery
at time t, E

t+1

= E
t

� ⌧P batt

t

, where ⌧ is the sample time.
The hybrid vehicle control problem is

min ⌘(E
T

� Emax)2 +
T�1

X

t=0

f(P eng

t

, z
t

) + �(z
t

� z
t�1

)
+

s.t. E
t+1

= E
t

� ⌧P batt

t

P batt

t

+ P eng

t

� P des

t

z
t

2 {0, 1}, t = 0, . . . , T � 1

where P batt

t

, P eng

t

, z
t

(engine on/o↵) and E
t

are the
optimization variables. The term �(z

t

� z
t�1

)
+

penalizes
the engine going from the o↵ to the on state. By choosing
T = 72 steps, the resulting MIQP problem has n = 862
optimization variables, p = 72 binary variables, m = 503
inequality constraints, q = 575 equality constraints.

The solver GUROBI (Gurobi Optimization, Inc., 2014)
computes the optimal cost V ⇤ = 135.9 in 21.05 s with
default options. The cost calculated by the ADMM-based
heuristic approach of Takapoui et al. (2016), denoted
as miqpADMM, is 138.1 1 and is obtained in 0.40 s for
preconditioning + 3.55 s for solving the problem.

The performance of Algorithm 1+4+2 implemented in
interpreted MATLAB code, denoted as miqpGPAD-H, is
reported in Table 1 for di↵erent values of the feasibil-
ity tolerance ✏

A

and optimality tolerance ✏
V

. Whenever
condition (9) is satisfied at a given iteration k, rather
than restarting the values of �

k

we just assign w
k

 y
k

,
w

eq,k

 ⌫
k

in Step (5) for that iteration. We also intro-
duce the regularization term 10�3I in the cost function to
make the primal Hessian matrix Q positive definite. The
tolerance value used in Algorithm 2 is ✏

I

= 1e� 2.

✏V , ✏A Cost Precond., Solving Constr. violation

1e-2, 1e-2 131.5 1.19, 3.81 s 3.62e-1

1e-2, 1e-3 135.9 1.12, 8.62 s 8.09e-3

1e-3, 1e-3 135.9 1.07, 8.67 s 7.98e-3

1e-3, 1e-4 136.0 1.14, 13.37 s 2.59e-3

1e-4, 1e-3 136.1 1.10, 15.87 s 1.08e-3

Table 1. Performance comparison with di↵er-
ent values of ✏

V

, ✏
A

for miqpGPAD-H

Figure 1 shows the trajectories obtained with miqpGPAD-
H for ✏

V

= 1e�2, ✏
A

= 1e�3 and compare them with the
ones obtained by GUROBI and miqpADMM. It is apparent
that the proposed heuristic approach is computationally
faster and very simple to implement in an embedded
control platform, and keeps the quality of the solution over
a su�cient level for the practical application at hand.

Next, we test the B&B method miqpGPAD on randomly
generated MIQP problems with n variables, m inequality
1

https://github.com/cvxgrp/miqp_admm/tree/master/matlab/

vehicle.m

0 10 20 30 40 50 60 70

P
en

g
t

0

20

40

0 10 20 30 40 50 60 70

P
ba
tt

t

-2

0

2

0 10 20 30 40 50 60 70

E
t

0

0.5

1

t
0 10 20 30 40 50 60 70

z t

0

0.5

1

miqpADMM

GUROBI

miqpGPAD

Fig. 1. Engine power, battery power, battery energy, and
engine on/o↵ signals versus time.(✏

V

= 1e � 2, ✏
A

=
1e� 3 case for miqpGPAD), cost=135.9

constraints, p binary constraints, q equality constraints,
condition number  = 10 of the primal Hessian Q 2 .
Algorithm 3 is implemented in interpreted MATLAB code
and Algorithms 1, 2, 4 are implemented in Embedded
MATLAB and complied. The tolerance values used in

n m p q miqpGPAD GUROBI

10 100 2 2 15.6 6.56
50 25 5 3 3.44 8.74
50 150 10 5 63.22 46.25

100 50 2 5 6.22 26.24
100 200 15 5 164.06 188.42
150 100 5 5 31.26 88.13
150 200 20 5 258.80 274.06
200 50 15 6 35.08 144.38

Table 2. Average CPU time (ms) on random
MIQP problems over 50 instances for each

combination of n, m, p, q.

Algorithm 1 are ✏
V

, ✏
A

= 1e � 5, in Algorithm 2 ✏
I

=
1e� 2. The CPU time reported for solving feasible MIQP
problems, averaged over 50 executions is listed in Table 2.
The results show that the proposed scheme performs well
as compared to the commercial GUROBI solver, but has
the advantage of a very simple coding, therefore making it
very suitable for embedded control applications.

6. CONCLUSION

In this paper we have presented an exact and a heuristic
approach to solve MIQPs based on accelerated gradient
projection methods applied on the dual QP relaxations. In
spite of their simplicity of code, the proposed approaches
2 The entries of matrix A are generated from the normal distribution
N (0, 0.0025), `, u from the uniform distribution U(0, 100), c from
N (0, 1); matrix Q = U⌃V 0, where U, V are orthogonal matrices
generated by QR decomposition of random n ⇥ n matrices, and ⌃
is diagonal with nonzero entries having logarithms equally spaced
between ± log()/4 (Bierlaire et al., 1991).

•Same	dual	QP	matrices,		preconditioning	only	computed	at	root	node

•Warm-start	exploited,	dual	cost	used	to	stop	QP	relaxations	earlier

•Criterion	based	on	Farkas	lemma	to	detect	QP	infeasibility

(Naik,	Bemporad,	2016)

min 1
2x

0
Qx+ q

0
x

s.t. `  Ax  u

A

i

x 2 {`
i

, u

i

}, i 2 I

quantization

Heuristic ADMM method for (Suboptimal) MIQP
(Takapoui,	Moehle,	Boyd,	Bemporad,	ACC’16)

66

•MIQP	problem:

• ADMM	iterations:	

• Iterations	converge	to	a	(local)	solution

x

k+1

= �(Q+ ⇢A

T

A)

�1

(⇢A

T

(y

k � z

k

) + q)

z

k+1

= min{max{Ax

k+1

+ y

k

, `}, u}

z

k+1

i

=

8
<

:
`

i

if z

k+1

i

<

`

i

+u

i

2

u

i

if z

k+1

i

� `

i

+u

i

2

, i 2 I

y

k+1

= y

k

+Ax

k+1 � z

k+1

(Naik,	Bemporad,	2016)• Similar	idea	also	applicable	to	fast	gradient	methods

ADMM method for (Suboptimal) MIQP
(Takapoui,	Moehle,	Boyd,	Bemporad,	ACC’16)

67

• Example:	power	converter	control

optimal	solution ADMM	solution

output voltage
v2

input voltage
sign ut

0 10 20 30 40 50 60 70
0

100

200

0 10 20 30 40 50 60 70
-20

0

20

0 10 20 30 40 50 60 70
0

10

20

30

0 10 20 30 40 50 60 70
0

0.5

1

t

P
E
n
g

t
P

b
a
tt

t
E

t
z
t

0 10 20 30 40 50 60 70
0

100

200

0 10 20 30 40 50 60 70
-20

0

20

0 10 20 30 40 50 60 70
0

10

20

30

0 10 20 30 40 50 60 70
0

0.5

1

t

P
E
n
g

t
P

b
a
tt

t
E

t
z
t

Fig. 1: Engine power, battery power, battery energy, and engine on/off signals versus time. Left: the global
solution. Right: the solution found using ADMM (Algorithm 1).

L1

L2

R

+
−utVdc

C1

C2

Fig. 2: Converter circuit model.

Figure 1, we see that qualitatively, the optimal trajectory
and the trajectory generated by ADMM are very similar.

C. Power converter control

We consider control of the switched-mode power
converter shown in Figure 2. The circuit dynamics are

ξt+1 = Gξt +Hut, t = 0, 1, . . . , T − 1,

where ξt = (i1,t, v1,t, i2,t, v2,t) is the system state at
epoch t, consisting of all inductor currents and capacitor
voltages, and ut ∈ {−1, 0, 1} is the control input. The
dynamics matrices G ∈ R4×4 and H ∈ R4×1 are
obtained by discretizing the dynamics of the circuit in
Figure 2.

We would like to control the switch configurations so
that v2 tracks a desired sinusoidal waveform. This can
be done by solving

minimize
∑T

t=0(v2,t − vdes)2 + λ|ut − ut−1|
subject to ξt+1 = Gξt +Hut

ξ0 = ξT
u0 = uT

ut ∈ {−1, 0, 1},

(6)

where λ ≥ 0 is a tradeoff parameter between output volt-
age regulation and switching frequency. The variables
are ξt for t = 0, . . . , T and ut for t = 0, . . . , T − 1.

Note that if we take λ = 0, and take the input
voltage ut to be unconstrained (i.e., allow ut to take any
values in R), (6) can be solved as a convex quadratic
minimization problem, with solution ξlst . Returning to

our original problem, we can penalize deviation from
this ideal waveform by including a regularization term
µ∥ξ − ξlst ∥

2 to (6), where µ > 0 is a positive weighting
parameter. We solved this regularized version of (6), with
L1 = 10 µH, C1 = 1 µF, L2 = 10 µH, C2 = 10 µF,
R = 1Ω, Vdc = 10V, T = 100 (with a discretization
interval of 0.5 µs), λ = 1.5V2, and µ = 0.1. We
run algorithm 1 with ρ = 2.7 and 500 iterations for
three different initializations. An approximate solution is
found via our heuristic in less than 2 seconds, whereas
it takes MOSEK more than 4 hours to find the global
solution. Figure 3 compares the approximate solution
derived by the heuristic with the global solution.

D. Signal decoding

We consider maximum-likelihood decoding of a mes-
sage passed through a linear multiple-input and multiple-
output (MIMO) channel. In particular, we have

y = Hx+ v,

where y ∈ Rp is the message received, H ∈ Rp×n is
the channel matrix, x ∈ Rn is the message sent, and the
elements of the noise vector v ∈ Rp are independent,
identically distributed Gaussian random variables. We
further assume that the elements of x belong to the signal
constellation {−3,−1, 1, 3}. The maximum likelihood
estimate of x is given by the solution to the problem

minimize ∥Hx̂− y∥2

subject to x̂i ∈ {− 3,−1, 1, 3}, i = 1, . . . , n,
(7)

where x̂ ∈ Rn is the variable.
We generate 1000 random problem instances with

H ∈ R2000×400 chosen from a standard normal distri-
bution. The uncorrupted signal x is chosen uniformly
randomly and the additive noise is Gaussian such that
the signal to noise ratio (SNR) is 8 dB. For such
a problem in embedded application, branch-and-bound

6

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 American Control Conference.

Received September 27, 2015.

0 10 20 30 40 50 60 70
0

100

200

0 10 20 30 40 50 60 70
-20

0

20

0 10 20 30 40 50 60 70
0

10

20

30

0 10 20 30 40 50 60 70
0

0.5

1

t

P
E
n
g

t
P

b
a
tt

t
E

t
z
t

0 10 20 30 40 50 60 70
0

100

200

0 10 20 30 40 50 60 70
-20

0

20

0 10 20 30 40 50 60 70
0

10

20

30

0 10 20 30 40 50 60 70
0

0.5

1

t

P
E
n
g

t
P

b
a
tt

t
E

t
z
t

Fig. 1: Engine power, battery power, battery energy, and engine on/off signals versus time. Left: the global
solution. Right: the solution found using ADMM (Algorithm 1).

L1

L2

R

+
−utVdc

C1

C2

Fig. 2: Converter circuit model.

Figure 1, we see that qualitatively, the optimal trajectory
and the trajectory generated by ADMM are very similar.

C. Power converter control

We consider control of the switched-mode power
converter shown in Figure 2. The circuit dynamics are

ξt+1 = Gξt +Hut, t = 0, 1, . . . , T − 1,

where ξt = (i1,t, v1,t, i2,t, v2,t) is the system state at
epoch t, consisting of all inductor currents and capacitor
voltages, and ut ∈ {−1, 0, 1} is the control input. The
dynamics matrices G ∈ R4×4 and H ∈ R4×1 are
obtained by discretizing the dynamics of the circuit in
Figure 2.

We would like to control the switch configurations so
that v2 tracks a desired sinusoidal waveform. This can
be done by solving

minimize
∑T

t=0(v2,t − vdes)2 + λ|ut − ut−1|
subject to ξt+1 = Gξt +Hut

ξ0 = ξT
u0 = uT

ut ∈ {−1, 0, 1},

(6)

where λ ≥ 0 is a tradeoff parameter between output volt-
age regulation and switching frequency. The variables
are ξt for t = 0, . . . , T and ut for t = 0, . . . , T − 1.

Note that if we take λ = 0, and take the input
voltage ut to be unconstrained (i.e., allow ut to take any
values in R), (6) can be solved as a convex quadratic
minimization problem, with solution ξlst . Returning to

our original problem, we can penalize deviation from
this ideal waveform by including a regularization term
µ∥ξ − ξlst ∥

2 to (6), where µ > 0 is a positive weighting
parameter. We solved this regularized version of (6), with
L1 = 10 µH, C1 = 1 µF, L2 = 10 µH, C2 = 10 µF,
R = 1Ω, Vdc = 10V, T = 100 (with a discretization
interval of 0.5 µs), λ = 1.5V2, and µ = 0.1. We
run algorithm 1 with ρ = 2.7 and 500 iterations for
three different initializations. An approximate solution is
found via our heuristic in less than 2 seconds, whereas
it takes MOSEK more than 4 hours to find the global
solution. Figure 3 compares the approximate solution
derived by the heuristic with the global solution.

D. Signal decoding

We consider maximum-likelihood decoding of a mes-
sage passed through a linear multiple-input and multiple-
output (MIMO) channel. In particular, we have

y = Hx+ v,

where y ∈ Rp is the message received, H ∈ Rp×n is
the channel matrix, x ∈ Rn is the message sent, and the
elements of the noise vector v ∈ Rp are independent,
identically distributed Gaussian random variables. We
further assume that the elements of x belong to the signal
constellation {−3,−1, 1, 3}. The maximum likelihood
estimate of x is given by the solution to the problem

minimize ∥Hx̂− y∥2

subject to x̂i ∈ {− 3,−1, 1, 3}, i = 1, . . . , n,
(7)

where x̂ ∈ Rn is the variable.
We generate 1000 random problem instances with

H ∈ R2000×400 chosen from a standard normal distri-
bution. The uncorrupted signal x is chosen uniformly
randomly and the additive noise is Gaussian such that
the signal to noise ratio (SNR) is 8 dB. For such
a problem in embedded application, branch-and-bound

6

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 American Control Conference.

Received September 27, 2015.

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

t

u
t

v
2
,t

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

u
t

v
2
,t

Fig. 3: The switch configuration and the output voltage. Left: the global solution. Right: the solution using
ADMM (Algorithm 1).

methods are not desirable due to their worst-case time
complexity. We run the heuristic with only one initial-
ization, with 10 iterations to find xadmm. The average
runtime for each problem (including preprocessing) is 80
milliseconds, which is substantially faster than branch-
and-bound based methods. We compare the performance
of the points xadmm with the points found by relax-and-
round technique xrlx. In Figure 4 we have plotted the
histogram of the difference between the objective values
evaluated at xadmm and xrlx. Depicted in Figure 4, we see
that in 95% of the cases, the bit error rate (BER) using
our heuristic was at least as good as the bit error rate
using relax and round.

IV. CONCLUSIONS

In this paper, we introduced an effective heuristic
for finding approximate solutions to convex quadratic
minimization problems over the intersection of affine and
nonconvex sets. Our heuristic is significantly faster than
branch-and-bound algorithms and has shown effective in
a variety of embedded problems including hybrid vehicle
control, power converter control, and signal decoding.

REFERENCES

[AB07] T. Achterberg and T. Berthold. Improving the Feasibility
Pump. Discrete Optimization, 4(1):77–86, 2007.

[ApS15] MOSEK ApS. TheMOSEKoptimization toolbox for MAT-
LAB manual. Version 7.1 (Revision 28), 2015.

[Bec14] A. Beck. Introduction to Nonlinear Optimization: Theory,
Algorithms, and Applications with MATLAB, volume 19.
SIAM, 2014.

[Bem15] A. Bemporad. Solving mixed-integer quadratic programs
via nonnegative least squares. Submitted for publication,
2015.

[BFL07] L. Bertacco, M. Fischetti, and A. Lodi. A feasibility pump
heuristic for general mixed-integer problems. Discrete
Optimization, 4(1):63–76, 2007.

[BM99] A. Bemporad and M. Morari. Control of systems in-
tegrating logic, dynamics, and constraints. Automatica,
35(3):407–427, 1999.

[Bol13] D. Boley. Local linear convergence of the alternating
direction method of multipliers on quadratic or linear
programs. SIAM Journal on Optimization, 23(4):2183–
2207, 2013.

[BPC+11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3(1):1–122, 2011.

[Bra10] A. M. Bradley. Algorithms for the Equilibration of
Matrices and their Application to Limited-Memory Quasi-
Newton Methods. PhD thesis, Stanford University, 2010.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[CA06] M. Carrión and J. M. Arroyo. A computationally efficient
mixed-integer linear formulation for the thermal unit com-
mitment problem. IEEE Transactions on Power Systems,
21(3):1371–1378, 2006.

[CCH89] V. Chvátal, W. Cook, and M. Hartmann. On cutting-plane
proofs in combinatorial optimization. Linear Algebra and
its Applications, 114:455–499, 1989.

[Cha12] R. Chartrand. Nonconvex splitting for regularized low-
rank + sparse decomposition. IEEE Transactions on Signal
Processing, 60(11):5810–5819, 2012.

[CPDB13] E. Chu, N. Parikh, A. Domahidi, and S. Boyd. Code
generation for embedded second-order cone programming.
In Proceedings of the 2013 European Control Conference,
pages 1547–1552, 2013.

[CPL09] IBM ILOG CPLEX. User’s manual for CPLEX. Interna-
tional Business Machines Corporation, 46(53):157, 2009.

[CPM10] J. P. S. Catalão, H. M. I. Pousinho, and V. M. F. Mendes.
Scheduling of head-dependent cascaded hydro systems:
Mixed-integer quadratic programming approach. Energy
Conversion and Management, 51(3):524–530, 2010.

[CW13] R. Chartrand and B. Wohlberg. A nonconvex ADMM
algorithm for group sparsity with sparse groups. In Pro-
ceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6009–
6013. IEEE, 2013.

[DBEY13] N. Derbinsky, J. Bento, V. Elser, and J. S. Yedidia. An
improved three-weight message-passing algorithm. arXiv
preprint arXiv:1305.1961, 2013.

[DCB13] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP
solver for embedded systems. In Proceedings of the 12th
European Control Conference, pages 3071–3076. IEEE,
2013.

[DY12] W. Deng and W. Yin. On the global and linear conver-
gence of the generalized alternating direction method of

7

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 American Control Conference.

Received September 27, 2015.

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

t

u
t

v
2
,t

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

u
t

v
2
,t

Fig. 3: The switch configuration and the output voltage. Left: the global solution. Right: the solution using
ADMM (Algorithm 1).

methods are not desirable due to their worst-case time
complexity. We run the heuristic with only one initial-
ization, with 10 iterations to find xadmm. The average
runtime for each problem (including preprocessing) is 80
milliseconds, which is substantially faster than branch-
and-bound based methods. We compare the performance
of the points xadmm with the points found by relax-and-
round technique xrlx. In Figure 4 we have plotted the
histogram of the difference between the objective values
evaluated at xadmm and xrlx. Depicted in Figure 4, we see
that in 95% of the cases, the bit error rate (BER) using
our heuristic was at least as good as the bit error rate
using relax and round.

IV. CONCLUSIONS

In this paper, we introduced an effective heuristic
for finding approximate solutions to convex quadratic
minimization problems over the intersection of affine and
nonconvex sets. Our heuristic is significantly faster than
branch-and-bound algorithms and has shown effective in
a variety of embedded problems including hybrid vehicle
control, power converter control, and signal decoding.

REFERENCES

[AB07] T. Achterberg and T. Berthold. Improving the Feasibility
Pump. Discrete Optimization, 4(1):77–86, 2007.

[ApS15] MOSEK ApS. TheMOSEKoptimization toolbox for MAT-
LAB manual. Version 7.1 (Revision 28), 2015.

[Bec14] A. Beck. Introduction to Nonlinear Optimization: Theory,
Algorithms, and Applications with MATLAB, volume 19.
SIAM, 2014.

[Bem15] A. Bemporad. Solving mixed-integer quadratic programs
via nonnegative least squares. Submitted for publication,
2015.

[BFL07] L. Bertacco, M. Fischetti, and A. Lodi. A feasibility pump
heuristic for general mixed-integer problems. Discrete
Optimization, 4(1):63–76, 2007.

[BM99] A. Bemporad and M. Morari. Control of systems in-
tegrating logic, dynamics, and constraints. Automatica,
35(3):407–427, 1999.

[Bol13] D. Boley. Local linear convergence of the alternating
direction method of multipliers on quadratic or linear
programs. SIAM Journal on Optimization, 23(4):2183–
2207, 2013.

[BPC+11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3(1):1–122, 2011.

[Bra10] A. M. Bradley. Algorithms for the Equilibration of
Matrices and their Application to Limited-Memory Quasi-
Newton Methods. PhD thesis, Stanford University, 2010.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[CA06] M. Carrión and J. M. Arroyo. A computationally efficient
mixed-integer linear formulation for the thermal unit com-
mitment problem. IEEE Transactions on Power Systems,
21(3):1371–1378, 2006.

[CCH89] V. Chvátal, W. Cook, and M. Hartmann. On cutting-plane
proofs in combinatorial optimization. Linear Algebra and
its Applications, 114:455–499, 1989.

[Cha12] R. Chartrand. Nonconvex splitting for regularized low-
rank + sparse decomposition. IEEE Transactions on Signal
Processing, 60(11):5810–5819, 2012.

[CPDB13] E. Chu, N. Parikh, A. Domahidi, and S. Boyd. Code
generation for embedded second-order cone programming.
In Proceedings of the 2013 European Control Conference,
pages 1547–1552, 2013.

[CPL09] IBM ILOG CPLEX. User’s manual for CPLEX. Interna-
tional Business Machines Corporation, 46(53):157, 2009.

[CPM10] J. P. S. Catalão, H. M. I. Pousinho, and V. M. F. Mendes.
Scheduling of head-dependent cascaded hydro systems:
Mixed-integer quadratic programming approach. Energy
Conversion and Management, 51(3):524–530, 2010.

[CW13] R. Chartrand and B. Wohlberg. A nonconvex ADMM
algorithm for group sparsity with sparse groups. In Pro-
ceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6009–
6013. IEEE, 2013.

[DBEY13] N. Derbinsky, J. Bento, V. Elser, and J. S. Yedidia. An
improved three-weight message-passing algorithm. arXiv
preprint arXiv:1305.1961, 2013.

[DCB13] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP
solver for embedded systems. In Proceedings of the 12th
European Control Conference, pages 3071–3076. IEEE,
2013.

[DY12] W. Deng and W. Yin. On the global and linear conver-
gence of the generalized alternating direction method of

7

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 American Control Conference.

Received September 27, 2015.

Explicit hybrid MPC

(Borrelli,	Baotic,	Bemporad,	Morari,	Automatica,	2005)

(Mayne,	ECC	2001)

(Alessio,	Bemporad,	ADHS	2006)

(Mayne,	Rakovic,	2002)

• It	is	possible	to	write	hybrid	MPC	laws	in	explicit	form	too	!

• The	explicit	MPC	law	is	still	piecewise	affine	on	polyhedra

• The	control	law	may	be	discontinuous,	polyhedra	may	overlap

(Bemporad,	Hybrid	Toolbox,	2003)	

(Bemporad,	Borrelli,	Morari,	2000)

min

2X

k=0

kx
2k

� r(t)k1

s.t.

(
x

1k

� 25, k = 1,2

hybrid model

69

Explicit MPC – Temperature control

>>E=expcon(C,range,options);

>> E

Explicit controller (based on hybrid controller C)
 3 parameter(s)
 1 input(s)
 12 partition(s)
sampling time = 0.5

The controller is for hybrid systems (tracking)
This is a state-feedback controller.

Type "struct(E)" for more details.
>>

Section	in	the	(T1,T2)-space
for	Tref	=	30

384	numbers	to	store
in	memory

70

Explicit MPC – Temperature control

generated	
C-code

utils/expcon.h

Hybrid Systems Identification

•Model	Predictive	Control	requires	a	model	of	the	process.

•Models	are	usually	obtained	from	data	via	systems	identification	
(offline	and/or	online)

•Models	may	depend	on	parameters	(e.g.,	ambient	conditions)

In	industrial	MPC	applications,	most	
of	the	effort	is	spent	in	identifying	
(multiple)	linear	prediction	models	
from	data

71

-0.8

-0.6

-0.4

1

-0.2

0

0.2

0.4

0.6

0.5

0.8

0

10.8-0.5 0.60.40.20-0.2-0.4-0.6-1 -0.8-1 p1(k)

p2(k)

x(k+1)

f(x) =

8
><

>:

F1x+ g1 if H1x  K1
...
Fsx+ gs if Hsx  Ks

Hybrid Systems Identification
• Problem:	given	input/output	pairs	{x(k),y(k)}, k=1,...,N	and	number	s	
of	models,	compute	an	approximation	y ≃f(x)

72

• Need	to	learn	both	the	parameters	(Fi, gi)	of	
the	affine	submodels	and	the	partition	(Hi, Ki)
of	the	PWA	map	from	data	(off-line	learning)

PWA	model
(PieceWise	Affine)

y ≃f(x)

x
• Possibly	need	to	update	model	and	
partition	as	new	data	are	collected	(on-line	learning)

73

Approaches to PWA Identification

• Mixed-integer	linear	or	quadratic	programming

• Partition	of	infeasible	set	of	inequalities

• K-means	clustering	in	a	feature	space

• Bayesian	approach

• Kernel-based	approaches

• Hyperplane	clustering	in	data	space

• Recursive	multiple	least	squares	&	PWL	separation	

(Bemporad,	Garulli,	Paoletti,	Vicino,	2005)

(Ferrari-Trecate,	Muselli,	Liberati,	Morari,	2003)

(Roll,	Bemporad,	Ljung,	2004)

(Juloski,	Wieland,	Heemels,	2004)

(Breschi,	Piga,	Bemporad,	2016)

(Pillonetto,	2016)

(Münz,	Krebs,	2002)

This	also	splits	the	data	points	x(k)	in	clusters

i(k) arg min
i=1,...,s ei(k)

0⇤�1
e

e

i

(k)+(x(k)� c

i

)0R�1
i

(x(k)�c
i

)

C

i

= {x(k) : i(k) = i}

PWA Regression Algorithm

74

1. Estimate	the	parameter	matrices	(Fi, gi) recursively,	by	only
updating	one	model	Fi(k), gi(k) at	the	time	such	that

(Alexander,	Ghirnikar,	1993)

(Breschi,	Piga,	Bemporad,	2016)

one-step prediction error
of model #i

proximity to centroid
of cluster #i

2.Compute	a	polyhedral	partition	(Hi, Ki) of	the	regressor	space	via	
multi-category	linear	separation

�(x) = max

i=1,...,s

{w0
i

x� �

i

}
• Robust linear programming
• Piecewise-smooth Newton method
• Averaged stochastic gradient descent

recursive least squares based on inverse QR decomposition

(Bennet,	Mangasarian,	1994)

PWA Regression Examples

75

(Breschi,	Piga,	Bemporad,	2016)

All computations are carried out on an i7 2.40-GHz Intel core
processor with 4 GB of RAM running MATLAB R2014b.
In both examples, the output used in the training phase is
corrupted by an additive zero-mean white noise eo with
Gaussian distribution. The effect of measurement noise on
the output signal is quantified through the Signal-to-Noise
Ratio (SNR), that is defined for the i-th output channel as

SNRi = 10 log

∑N
k=1 (yi(k)− eo,i(k))

2

∑N
k=1 e

2
o,i(k)

, (15)

with eo,i(k) denoting the i-th component of eo(k).
The results obtained after the training phase are vali-

dated on a noiseless data sequence. Let yo and ŷ denote,
respectively, the vectors staking the actual and the simulated
outputs of the estimated model, let ȳo,i be the sample mean
of the i-th output, and NV the length of the validation data
sequence. The Best Fit Rate (BFR) and Mean Square Error
(MSE) indicators

BFRi =max

{

1− ∥yo,i − ŷi∥2
∥yo,i − ȳo,i∥2

, 0

}

(16)

MSEi =
1

NV

NV
∑

k=1

(yo,i(k)− ŷi(k))
2 (17)

defined for each output channel i, i = 1, . . . , ny , are used to
assess the quality of the estimated models.

A. Identification of a multivariable PWARX system

Let the system generating the data be a MIMO PWARX
system described by the difference equation
[

y1(k)
y2(k)

]

=
[−0.83 0.20

0.30 −0.52

]

[

y1(k−1)

y2(k−1)

]

+
[−0.34 0.45
−0.30 0.24

]

[

u1(k−1)

u2(k−1)

]

+ [0.200.15] + max
{

[

0.20 −0.90
0.10 −0.42

]

[

y1(k−1)

y2(k−1)

]

+ [0.42 0.20
0.50 0.64]

[

u1(k−1)

u2(k−1)

]

+ [0.400.30] , [
0
0]
}

+ eo(k),

which is characterized by s̄ = 4 operating modes, given
by the possible combinations of sign of the components
of the first vector argument of the “max” operator. The
excitation input u(k) is a white noise sequence with uniform
distribution in the box [−1 0]× [−0.4 0.6] and length N =
4000, eo(k) ∈ R2 is a zero-mean white noise with covariance
matrix Λe = [0.02 0.02

0.02 0.02]. This corresponds to signal-to-noise
ratios equal to SNR1 = 8.7 dB and SNR2 = 6.9 dB on the
first and second output channels, respectively.

We run Algorithm 1 with s = s̄ = 4. The initial guess for
the cluster centroids and covariance matrices are computed
by running an instance of Algorithm 1 without the first term
in (6) (i.e., only the modeling error is used as a discrimination
criterion to cluster the observed data points at the first run).
Algorithm 1 is then run again for 15 times, with the full
criterion (6), by initializing Ai, ci and Ri with the output
of the previous run. The clusters generated by Algorithm 1
are then separated through the off-line multicategory dis-
crimination method described in Section III-B.1, by solving
the convex optimization problem (13) via the RPSN method

TABLE I
PWARX IDENTIFICATION: BFR AND MSE ON THE TWO OUTPUT

CHANNELS

BFR1 BFR2 MSE1 MSE2

96.1% 96.3% 0.99 · 10−4 0.70·10−4

TABLE II
PWARX IDENTIFICATION: BFR ON THE TWO OUTPUT CHANNELS VS

LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000

B
FR

1 (Off-line) RLP [8] 96.0 % 96.5 % 99.0 %
(Off-line) RPSN 96.2 % 96.4 % 98.9 %
(On-line) ASGD 86.7 % 95.0 % 96.7 %

B
FR

2 (Off-line) RLP [8] 96.2 % 96.9 % 99.0 %
(Off-line) RPSN 96.3 % 96.8 % 99.0 %
(On-line) ASGD 87.4 % 95.2 % 96.4 %

TABLE III
PWARX IDENTIFICATION: CPU TIME REQUIRED TO PARTITION THE

REGRESSOR SPACE VS LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000
(Off-line) RLP [8] 0.308 s 3.227 s 112.435 s
(Off-line) RPSN 0.016 s 0.086 s 0.365 s
(On-line) ASGD 0.013 s 0.023 s 0.067 s

described in [6], which is initialized with {ωi, γi}si=1 = 0.
The regularization parameter λ is set to 10−5.

The quality of the estimated PWA model is assessed w.r.t.
a validation set of NV = 500 samples. The true output yo and
the open-loop simulated output ŷ generated by the estimated
model are plotted in Fig. 1, along with the simulation error
yo(k)− ŷ(k). For the sake of visualization, only the samples
from time 101 to 200 related to the first channel are shown in
Fig. 1. The obtained BFR and MSE are reported in Table I.
The estimated polyhedral partition of the regressor space is
such that only 12 out of 500 data samples are misclassified
(i.e., 2.4 % of the whole validation set).

As the accuracy of the final model estimate and the
total CPU time is influenced by the number M of runs
of Algorithm 1, the performance of the proposed learning
approach has been tested with respect to both M and the
dimension N of the training set. The obtained BFR as a
function of iterations of Algorithm 1 is plotted in Fig. 2 for
different values of N . Clearly, there is no improvement in
BFR on the two output channels after about 8 runs.

The total CPU time for estimating the PWARX model
is 0.76 s, of which 0.016 s are taken to solve the linear
multi-category discrimination problem (13). For the sake of
comparison, both the robust linear programming approach
of [8] and the on-line method described in Section III-B.22

are also run to generate the partition. Results in Table II
show that all of the three algorithms used to compute
the polyhedral partition of the regressor space lead to an
accurate estimate of the system, with BFRs larger then 95 %
(except when N = 4000 and the on-line multi-category

2In executing the on-line approach in Section III-B.2, the weights πi and
the initial guess of φ used by the stochastic gradient method are computed by
executing the batch Algorithm in Section III-B.1 on the first 3000 training
samples.

All computations are carried out on an i7 2.40-GHz Intel core
processor with 4 GB of RAM running MATLAB R2014b.
In both examples, the output used in the training phase is
corrupted by an additive zero-mean white noise eo with
Gaussian distribution. The effect of measurement noise on
the output signal is quantified through the Signal-to-Noise
Ratio (SNR), that is defined for the i-th output channel as

SNRi = 10 log

∑N
k=1 (yi(k)− eo,i(k))

2

∑N
k=1 e

2
o,i(k)

, (15)

with eo,i(k) denoting the i-th component of eo(k).
The results obtained after the training phase are vali-

dated on a noiseless data sequence. Let yo and ŷ denote,
respectively, the vectors staking the actual and the simulated
outputs of the estimated model, let ȳo,i be the sample mean
of the i-th output, and NV the length of the validation data
sequence. The Best Fit Rate (BFR) and Mean Square Error
(MSE) indicators

BFRi =max

{

1− ∥yo,i − ŷi∥2
∥yo,i − ȳo,i∥2

, 0

}

(16)

MSEi =
1

NV

NV
∑

k=1

(yo,i(k)− ŷi(k))
2 (17)

defined for each output channel i, i = 1, . . . , ny , are used to
assess the quality of the estimated models.

A. Identification of a multivariable PWARX system

Let the system generating the data be a MIMO PWARX
system described by the difference equation
[

y1(k)
y2(k)

]

=
[−0.83 0.20

0.30 −0.52

]

[

y1(k−1)

y2(k−1)

]

+
[−0.34 0.45
−0.30 0.24

]

[

u1(k−1)

u2(k−1)

]

+ [0.200.15] + max
{

[

0.20 −0.90
0.10 −0.42

]

[

y1(k−1)

y2(k−1)

]

+ [0.42 0.20
0.50 0.64]

[

u1(k−1)

u2(k−1)

]

+ [0.400.30] , [
0
0]
}

+ eo(k),

which is characterized by s̄ = 4 operating modes, given
by the possible combinations of sign of the components
of the first vector argument of the “max” operator. The
excitation input u(k) is a white noise sequence with uniform
distribution in the box [−1 0]× [−0.4 0.6] and length N =
4000, eo(k) ∈ R2 is a zero-mean white noise with covariance
matrix Λe = [0.02 0.02

0.02 0.02]. This corresponds to signal-to-noise
ratios equal to SNR1 = 8.7 dB and SNR2 = 6.9 dB on the
first and second output channels, respectively.

We run Algorithm 1 with s = s̄ = 4. The initial guess for
the cluster centroids and covariance matrices are computed
by running an instance of Algorithm 1 without the first term
in (6) (i.e., only the modeling error is used as a discrimination
criterion to cluster the observed data points at the first run).
Algorithm 1 is then run again for 15 times, with the full
criterion (6), by initializing Ai, ci and Ri with the output
of the previous run. The clusters generated by Algorithm 1
are then separated through the off-line multicategory dis-
crimination method described in Section III-B.1, by solving
the convex optimization problem (13) via the RPSN method

TABLE I
PWARX IDENTIFICATION: BFR AND MSE ON THE TWO OUTPUT

CHANNELS

BFR1 BFR2 MSE1 MSE2

96.1% 96.3% 0.99 · 10−4 0.70·10−4

TABLE II
PWARX IDENTIFICATION: BFR ON THE TWO OUTPUT CHANNELS VS

LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000

B
FR

1 (Off-line) RLP [8] 96.0 % 96.5 % 99.0 %
(Off-line) RPSN 96.2 % 96.4 % 98.9 %
(On-line) ASGD 86.7 % 95.0 % 96.7 %

B
FR

2 (Off-line) RLP [8] 96.2 % 96.9 % 99.0 %
(Off-line) RPSN 96.3 % 96.8 % 99.0 %
(On-line) ASGD 87.4 % 95.2 % 96.4 %

TABLE III
PWARX IDENTIFICATION: CPU TIME REQUIRED TO PARTITION THE

REGRESSOR SPACE VS LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000
(Off-line) RLP [8] 0.308 s 3.227 s 112.435 s
(Off-line) RPSN 0.016 s 0.086 s 0.365 s
(On-line) ASGD 0.013 s 0.023 s 0.067 s

described in [6], which is initialized with {ωi, γi}si=1 = 0.
The regularization parameter λ is set to 10−5.

The quality of the estimated PWA model is assessed w.r.t.
a validation set of NV = 500 samples. The true output yo and
the open-loop simulated output ŷ generated by the estimated
model are plotted in Fig. 1, along with the simulation error
yo(k)− ŷ(k). For the sake of visualization, only the samples
from time 101 to 200 related to the first channel are shown in
Fig. 1. The obtained BFR and MSE are reported in Table I.
The estimated polyhedral partition of the regressor space is
such that only 12 out of 500 data samples are misclassified
(i.e., 2.4 % of the whole validation set).

As the accuracy of the final model estimate and the
total CPU time is influenced by the number M of runs
of Algorithm 1, the performance of the proposed learning
approach has been tested with respect to both M and the
dimension N of the training set. The obtained BFR as a
function of iterations of Algorithm 1 is plotted in Fig. 2 for
different values of N . Clearly, there is no improvement in
BFR on the two output channels after about 8 runs.

The total CPU time for estimating the PWARX model
is 0.76 s, of which 0.016 s are taken to solve the linear
multi-category discrimination problem (13). For the sake of
comparison, both the robust linear programming approach
of [8] and the on-line method described in Section III-B.22

are also run to generate the partition. Results in Table II
show that all of the three algorithms used to compute
the polyhedral partition of the regressor space lead to an
accurate estimate of the system, with BFRs larger then 95 %
(except when N = 4000 and the on-line multi-category

2In executing the on-line approach in Section III-B.2, the weights πi and
the initial guess of φ used by the stochastic gradient method are computed by
executing the batch Algorithm in Section III-B.1 on the first 3000 training
samples.

Results:

All computations are carried out on an i7 2.40-GHz Intel core
processor with 4 GB of RAM running MATLAB R2014b.
In both examples, the output used in the training phase is
corrupted by an additive zero-mean white noise eo with
Gaussian distribution. The effect of measurement noise on
the output signal is quantified through the Signal-to-Noise
Ratio (SNR), that is defined for the i-th output channel as

SNRi = 10 log

∑N
k=1 (yi(k)− eo,i(k))

2

∑N
k=1 e

2
o,i(k)

, (15)

with eo,i(k) denoting the i-th component of eo(k).
The results obtained after the training phase are vali-

dated on a noiseless data sequence. Let yo and ŷ denote,
respectively, the vectors staking the actual and the simulated
outputs of the estimated model, let ȳo,i be the sample mean
of the i-th output, and NV the length of the validation data
sequence. The Best Fit Rate (BFR) and Mean Square Error
(MSE) indicators

BFRi =max

{

1− ∥yo,i − ŷi∥2
∥yo,i − ȳo,i∥2

, 0

}

(16)

MSEi =
1

NV

NV
∑

k=1

(yo,i(k)− ŷi(k))
2 (17)

defined for each output channel i, i = 1, . . . , ny , are used to
assess the quality of the estimated models.

A. Identification of a multivariable PWARX system

Let the system generating the data be a MIMO PWARX
system described by the difference equation
[

y1(k)
y2(k)

]

=
[−0.83 0.20

0.30 −0.52

]

[

y1(k−1)

y2(k−1)

]

+
[−0.34 0.45
−0.30 0.24

]

[

u1(k−1)

u2(k−1)

]

+ [0.200.15] + max
{

[

0.20 −0.90
0.10 −0.42

]

[

y1(k−1)

y2(k−1)

]

+ [0.42 0.20
0.50 0.64]

[

u1(k−1)

u2(k−1)

]

+ [0.400.30] , [
0
0]
}

+ eo(k),

which is characterized by s̄ = 4 operating modes, given
by the possible combinations of sign of the components
of the first vector argument of the “max” operator. The
excitation input u(k) is a white noise sequence with uniform
distribution in the box [−1 0]× [−0.4 0.6] and length N =
4000, eo(k) ∈ R2 is a zero-mean white noise with covariance
matrix Λe = [0.02 0.02

0.02 0.02]. This corresponds to signal-to-noise
ratios equal to SNR1 = 8.7 dB and SNR2 = 6.9 dB on the
first and second output channels, respectively.

We run Algorithm 1 with s = s̄ = 4. The initial guess for
the cluster centroids and covariance matrices are computed
by running an instance of Algorithm 1 without the first term
in (6) (i.e., only the modeling error is used as a discrimination
criterion to cluster the observed data points at the first run).
Algorithm 1 is then run again for 15 times, with the full
criterion (6), by initializing Ai, ci and Ri with the output
of the previous run. The clusters generated by Algorithm 1
are then separated through the off-line multicategory dis-
crimination method described in Section III-B.1, by solving
the convex optimization problem (13) via the RPSN method

TABLE I
PWARX IDENTIFICATION: BFR AND MSE ON THE TWO OUTPUT

CHANNELS

BFR1 BFR2 MSE1 MSE2

96.1% 96.3% 0.99 · 10−4 0.70·10−4

TABLE II
PWARX IDENTIFICATION: BFR ON THE TWO OUTPUT CHANNELS VS

LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000

B
FR

1 (Off-line) RLP [8] 96.0 % 96.5 % 99.0 %
(Off-line) RPSN 96.2 % 96.4 % 98.9 %
(On-line) ASGD 86.7 % 95.0 % 96.7 %

B
FR

2 (Off-line) RLP [8] 96.2 % 96.9 % 99.0 %
(Off-line) RPSN 96.3 % 96.8 % 99.0 %
(On-line) ASGD 87.4 % 95.2 % 96.4 %

TABLE III
PWARX IDENTIFICATION: CPU TIME REQUIRED TO PARTITION THE

REGRESSOR SPACE VS LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000
(Off-line) RLP [8] 0.308 s 3.227 s 112.435 s
(Off-line) RPSN 0.016 s 0.086 s 0.365 s
(On-line) ASGD 0.013 s 0.023 s 0.067 s

described in [6], which is initialized with {ωi, γi}si=1 = 0.
The regularization parameter λ is set to 10−5.

The quality of the estimated PWA model is assessed w.r.t.
a validation set of NV = 500 samples. The true output yo and
the open-loop simulated output ŷ generated by the estimated
model are plotted in Fig. 1, along with the simulation error
yo(k)− ŷ(k). For the sake of visualization, only the samples
from time 101 to 200 related to the first channel are shown in
Fig. 1. The obtained BFR and MSE are reported in Table I.
The estimated polyhedral partition of the regressor space is
such that only 12 out of 500 data samples are misclassified
(i.e., 2.4 % of the whole validation set).

As the accuracy of the final model estimate and the
total CPU time is influenced by the number M of runs
of Algorithm 1, the performance of the proposed learning
approach has been tested with respect to both M and the
dimension N of the training set. The obtained BFR as a
function of iterations of Algorithm 1 is plotted in Fig. 2 for
different values of N . Clearly, there is no improvement in
BFR on the two output channels after about 8 runs.

The total CPU time for estimating the PWARX model
is 0.76 s, of which 0.016 s are taken to solve the linear
multi-category discrimination problem (13). For the sake of
comparison, both the robust linear programming approach
of [8] and the on-line method described in Section III-B.22

are also run to generate the partition. Results in Table II
show that all of the three algorithms used to compute
the polyhedral partition of the regressor space lead to an
accurate estimate of the system, with BFRs larger then 95 %
(except when N = 4000 and the on-line multi-category

2In executing the on-line approach in Section III-B.2, the weights πi and
the initial guess of φ used by the stochastic gradient method are computed by
executing the batch Algorithm in Section III-B.1 on the first 3000 training
samples.

All computations are carried out on an i7 2.40-GHz Intel core
processor with 4 GB of RAM running MATLAB R2014b.
In both examples, the output used in the training phase is
corrupted by an additive zero-mean white noise eo with
Gaussian distribution. The effect of measurement noise on
the output signal is quantified through the Signal-to-Noise
Ratio (SNR), that is defined for the i-th output channel as

SNRi = 10 log

∑N
k=1 (yi(k)− eo,i(k))

2

∑N
k=1 e

2
o,i(k)

, (15)

with eo,i(k) denoting the i-th component of eo(k).
The results obtained after the training phase are vali-

dated on a noiseless data sequence. Let yo and ŷ denote,
respectively, the vectors staking the actual and the simulated
outputs of the estimated model, let ȳo,i be the sample mean
of the i-th output, and NV the length of the validation data
sequence. The Best Fit Rate (BFR) and Mean Square Error
(MSE) indicators

BFRi =max

{

1− ∥yo,i − ŷi∥2
∥yo,i − ȳo,i∥2

, 0

}

(16)

MSEi =
1

NV

NV
∑

k=1

(yo,i(k)− ŷi(k))
2 (17)

defined for each output channel i, i = 1, . . . , ny , are used to
assess the quality of the estimated models.

A. Identification of a multivariable PWARX system

Let the system generating the data be a MIMO PWARX
system described by the difference equation
[

y1(k)
y2(k)

]

=
[−0.83 0.20

0.30 −0.52

]

[

y1(k−1)

y2(k−1)

]

+
[−0.34 0.45
−0.30 0.24

]

[

u1(k−1)

u2(k−1)

]

+ [0.200.15] + max
{

[

0.20 −0.90
0.10 −0.42

]

[

y1(k−1)

y2(k−1)

]

+ [0.42 0.20
0.50 0.64]

[

u1(k−1)

u2(k−1)

]

+ [0.400.30] , [
0
0]
}

+ eo(k),

which is characterized by s̄ = 4 operating modes, given
by the possible combinations of sign of the components
of the first vector argument of the “max” operator. The
excitation input u(k) is a white noise sequence with uniform
distribution in the box [−1 0]× [−0.4 0.6] and length N =
4000, eo(k) ∈ R2 is a zero-mean white noise with covariance
matrix Λe = [0.02 0.02

0.02 0.02]. This corresponds to signal-to-noise
ratios equal to SNR1 = 8.7 dB and SNR2 = 6.9 dB on the
first and second output channels, respectively.

We run Algorithm 1 with s = s̄ = 4. The initial guess for
the cluster centroids and covariance matrices are computed
by running an instance of Algorithm 1 without the first term
in (6) (i.e., only the modeling error is used as a discrimination
criterion to cluster the observed data points at the first run).
Algorithm 1 is then run again for 15 times, with the full
criterion (6), by initializing Ai, ci and Ri with the output
of the previous run. The clusters generated by Algorithm 1
are then separated through the off-line multicategory dis-
crimination method described in Section III-B.1, by solving
the convex optimization problem (13) via the RPSN method

TABLE I
PWARX IDENTIFICATION: BFR AND MSE ON THE TWO OUTPUT

CHANNELS

BFR1 BFR2 MSE1 MSE2

96.1% 96.3% 0.99 · 10−4 0.70·10−4

TABLE II
PWARX IDENTIFICATION: BFR ON THE TWO OUTPUT CHANNELS VS

LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000

B
FR

1 (Off-line) RLP [8] 96.0 % 96.5 % 99.0 %
(Off-line) RPSN 96.2 % 96.4 % 98.9 %
(On-line) ASGD 86.7 % 95.0 % 96.7 %

B
FR

2 (Off-line) RLP [8] 96.2 % 96.9 % 99.0 %
(Off-line) RPSN 96.3 % 96.8 % 99.0 %
(On-line) ASGD 87.4 % 95.2 % 96.4 %

TABLE III
PWARX IDENTIFICATION: CPU TIME REQUIRED TO PARTITION THE

REGRESSOR SPACE VS LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000
(Off-line) RLP [8] 0.308 s 3.227 s 112.435 s
(Off-line) RPSN 0.016 s 0.086 s 0.365 s
(On-line) ASGD 0.013 s 0.023 s 0.067 s

described in [6], which is initialized with {ωi, γi}si=1 = 0.
The regularization parameter λ is set to 10−5.

The quality of the estimated PWA model is assessed w.r.t.
a validation set of NV = 500 samples. The true output yo and
the open-loop simulated output ŷ generated by the estimated
model are plotted in Fig. 1, along with the simulation error
yo(k)− ŷ(k). For the sake of visualization, only the samples
from time 101 to 200 related to the first channel are shown in
Fig. 1. The obtained BFR and MSE are reported in Table I.
The estimated polyhedral partition of the regressor space is
such that only 12 out of 500 data samples are misclassified
(i.e., 2.4 % of the whole validation set).

As the accuracy of the final model estimate and the
total CPU time is influenced by the number M of runs
of Algorithm 1, the performance of the proposed learning
approach has been tested with respect to both M and the
dimension N of the training set. The obtained BFR as a
function of iterations of Algorithm 1 is plotted in Fig. 2 for
different values of N . Clearly, there is no improvement in
BFR on the two output channels after about 8 runs.

The total CPU time for estimating the PWARX model
is 0.76 s, of which 0.016 s are taken to solve the linear
multi-category discrimination problem (13). For the sake of
comparison, both the robust linear programming approach
of [8] and the on-line method described in Section III-B.22

are also run to generate the partition. Results in Table II
show that all of the three algorithms used to compute
the polyhedral partition of the regressor space lead to an
accurate estimate of the system, with BFRs larger then 95 %
(except when N = 4000 and the on-line multi-category

2In executing the on-line approach in Section III-B.2, the weights πi and
the initial guess of φ used by the stochastic gradient method are computed by
executing the batch Algorithm in Section III-B.1 on the first 3000 training
samples.

quality of fit

CPU time for computing the partition

RLP = robust linear programming
RPSN = piecewise-smooth Newton
ASGD = (one-pass) averaged stochastic gradient

(Best Fit Rate)

• Identification	of	piecewise-affine	LPV-ARX	model

time (samples)

110 120 130 140 150 160 170 180 190 200

y
o
,ŷ

0

0.4

0.8

(a) First output channel (output signal): black = true, red = estimated
time (samples)

110 120 130 140 150 160 170 180 190 200

y
o
−
ŷ

-0.04

-0.02

0

0.02

0.04

(b) First output channel (simulation error)

Fig. 1. PWARX: output signal and simulation error on the first output channel.

where

ā1,1(p(k)) =

⎧
⎨

⎩

−0.3 if 0.4 (p1(k) + p2(k)) ≤ −0.3,
0.3 if 0.4 (p1(k) + p2(k)) ≥ 0.3,
0.4 (p1(k) + p2(k)) otherwise,

ā1,2(p(k)) =0.5 (|p1(k)|+|p2(k)|) , ā2,1(p(k))= p1(k)−p2(k),

ā2,2(p(k)) =

⎧
⎨

⎩

0.5 if p1(k) < 0,
0 if p1(k) = 0,

−0.5 if p1(k) > 0,

b̄1,1(p(k)) = 3p1(k) + p2(k),

b̄1,2(p(k)) =

{
0.5 if 2

(
p21(k) + p22(k)

)
≥ 0.5,

2
(
p21(k) + p22(k)

)
otherwise,

b̄2,1(p(k)) = 2 sin {p1(k)− p2(k)} , b̄2,2(p(k)) = 0.

Both the input u(k) and the scheduling vector p(k) are white
noise sequences (independent of each other) of length N =
11000 with uniform distribution in the boxes [−0.5 0.5]×
[−0.5 0.5] and [−1 1] × [−1 1], respectively. The noise
covariance matrix of eo(k) ∈ R2 is Λe = [0.25 0

0 0.25]. This
corresponds to signal-to-noise ratios on the first and on the
second output channel equal to SNR1 = 4 dB and SNR2 = 7
dB, respectively. The goal is to estimate, from the gathered
data, a PWA approximation of the p-dependent nonlinear
functions āi,j and b̄i,j defining the behaviour of the LPV
data-generating system.

1) Choice of the number of modes: The number s of
polyhedral regions defining the partition of the scheduling
vector space P = [−1 1] × [−1 1] is chosen through
cross validation. Specifically, the 11000-length training data
set is split into two disjoint sets. The first 10000 samples
are used to estimate a PWA approximation of āi,j and b̄i,j ,
along with the polyhedral partition of the scheduling vector
space P , for different values of s in the range 5–30. For
each value of s, the identification Algorithm 1 is run 10
times. The second part of training data (i.e., the remaining
1000 samples) is used to assess the quality of the identified
LPV models. Among the identified LPV models, the one
providing the largest aggregated BFRT = BFR1+BFR2 is
selected, which corresponds to s = 10 polyhedral regions.
The computed polyhedral partition, obtained by solving
problem (11) through the RPSN method explained in [6],
is plotted in Fig. 3 (the Hybrid Toolbox for MATLAB [4]
has been used to plot the polytopes in Fig. 3).

2) Model quality assessment: The quality of the estimated
LPV model is then assessed w.r.t. a validation dataset,
consisting of a new sequence of 2000 noiseless samples used
neither to estimate the LPV model nor to select the number
of modes s. For the sake of comparison, the nonlinear

Fig. 3. LPV: polyhedral partition of the scheduling vector space P .

coefficient functions āi,j(p(k)) and b̄i,j(p(k)) are also es-
timated through the parametric LPV identification approach
proposed in [3], by parameterizing the nonlinear functions
āi,j(p(k)) and b̄i,j(p(k)) as fourth-order polynomials in the
two-dimensional scheduling vector p(k).

The true outputs yo and the simulated output sequences
ŷ of the estimated LPV models are plotted in Fig. 4,
along with the simulation error yo(k) − ŷ(k). For the sake
of visualization, only the samples from time 101 to 200
related to the second channel are reported. The BFR on the
two output channels is reported in Table III. The obtained
results show that the proposed LPV identification approach
based on the PWA approximation of the coefficient functions
āi,j(p(k)) and b̄i,j(p(k))) outperforms the parametric LPV
identification approach in [3].

We also remark that the “online” computational time
required to evaluate the output of the LPV model, given
the current value of the scheduling vector p̄ and the past
input/output observations is about 120 µs, 40 µs of which
are required to evaluate which region the current scheduling
vector belongs to. This relatively “low” online computational
time is mainly due to the PWA structure of the coefficient
functions describing the LPV model, and it allows to use
the estimated LPV model in applications requiring a “fast”
online determination of the operating mode, such as in gain
scheduling or in LPV model predictive control.

3) Performance of multi-category discrimination algo-
rithms: The CPU time required to estimate the LPV model
through the proposed PWA regression approach is 759 s. This
includes the cross-validation phase to compute the number of

2636

PWA Regression Examples

76

(Breschi,	Piga,	Bemporad,	2016)

Results: quality of fit

runs
5 10 15 20 25 30

B
F
R

1

0.8

1

1.2

1.4 N=4000
N=20000
N=100000

runs
5 10 15 20 25 30

B
F
R

2

0.8

1

1.2

1.4 N=4000
N=20000
N=100000

Fig. 2. PWARX identification: BFR on the first and on the second output
channel vs number of runs of Algorithm 1

discrimination method is used). Furthermore, the results
show that the estimated models become more accurate as the
number of training samples increases. The CPU times taken
to compute the polyhedral partition are reported in Table III,
which shows that, for a large training set (i.e., N = 100000),
the off-line RPSN and the on-line ASGD method are about
300x and 1600x faster, respectively, than the robust linear
programming method of [8].

B. Identification of an LPV system
Let the data be collected from the MIMO LPV system
[

y1(k)
y2(k)

]

=
[

ā1,1(p(k)) ā1,2(p(k))
ā2,1(p(k)) ā2,2(p(k))

] [

y1(k−1)

y2(k−1)

]

+
[

b̄1,1(p(k)) b̄1,2(p(k))

b̄2,1(p(k)) b̄2,2(p(k))

] [

u1(k−1)

u2(k−1)

]

+ eo(k),

(18)

where

ā1,1(p(k)) =

⎧
⎨

⎩

−0.3 if 0.4 (p1(k) + p2(k)) ≤ −0.3,
0.3 if 0.4 (p1(k) + p2(k)) ≥ 0.3,
0.4 (p1(k) + p2(k)) otherwise,

ā1,2(p(k)) = 0.5 (|p1(k)|+ |p2(k)|) ,
ā2,1(p(k)) = p1(k)− p2(k),

ā2,2(p(k)) =

⎧
⎨

⎩

0.5 if p1(k) < 0,
0 if p1(k) = 0,

−0.5 if p1(k) > 0,

b̄1,1(p(k)) = 3p1(k) + p2(k),

b̄1,2(p(k)) =

{
0.5 if 2

(
p21(k) + p22(k)

)
≥ 0.5,

2
(
p21(k) + p22(k)

)
otherwise,

b̄2,1(p(k)) = 2 sin {p1(k)− p2(k)} ,
b̄2,2(p(k)) = 0.

Both the input u(k) and the scheduling vector p(k) are white
noise sequences (independent of each other) of length N =
11000 with uniform distribution in the boxes [−0.5 0.5]×
[−0.5 0.5] and [−1 1] × [−1 1], respectively. The noise
covariance matrix of eo(k) ∈ R2 is Λe = [0.25 0

0 0.25]. This
corresponds to signal-to-noise ratios on the first and on the
second output channel equal to SNR1 = 4 dB and SNR2 = 7
dB, respectively.

Fig. 3. LPV identification: polyhedral partition of the scheduling vector
space P

The goal is to estimate, from the gathered data, a PWA
approximation of the p-dependent nonlinear functions āi,j
and b̄i,j defining the behaviour of the LPV data-generating
system (18).

1) Choice of the number of modes: The number s of
polyhedral regions defining the partition of the scheduling
vector space P = [−1 1]× [−1 1] is chosen through cross
validation. Specifically, the 11000-length training data set is
split into two disjoint sets. The first 10000 samples are used
to estimate a PWA approximation of āi,j and b̄i,j , along
with the polyhedral partition of the scheduling vector space
P , for different values of s in the range 5–30. For each
value of s, the identification Algorithm 1 is run 10 times.
The second part of training data (i.e., the remaining 1000
samples) is used to assess the quality of the identified LPV
models. For each value of s, the BFR on the two output
channels is computed. Among the identified LPV models,
the one providing the largest aggregated BFRT = BFR1 +
BFR2 is selected, which corresponds to s = 10 polyhedral
regions. The computed polyhedral partition, obtained by
solving problem (13) through the regularized piecewise-
smooth Newton method explained in [6], is plotted in Fig. 3
(the Hybrid Toolbox for MATLAB [4] has been used to plot
the polytopes in Fig. 3).

2) Model quality assessment: The quality of the estimated
LPV model is then assessed w.r.t. a validation dataset,
consisting of a new sequence of NV = 2000 noiseless
samples used neither to estimate the LPV model nor to
select the number of modes s. For the sake of comparison,
the nonlinear coefficient functions āi,j(p(k)) and b̄i,j(p(k))
are also estimated through the parametric LPV identification
approach proposed in [3], by parameterizing the nonlinear
functions āi,j(p(k)) and b̄i,j(p(k)) as fourth-order polyno-
mials in the two-dimensional scheduling vector p(k).

The true outputs yo and the simulated output sequences ŷ
of the estimated LPV models are plotted in Fig. 4, along
with the simulation error yo(k) − ŷ(k). For the sake of
visualization, only the samples from time 101 to 200 related
to the second channel are reported. The BFR and MSE on the

runs
5 10 15 20 25 30

B
F
R

1

0.8

1

1.2

1.4 N=4000
N=20000
N=100000

runs
5 10 15 20 25 30

B
F
R

2

0.8

1

1.2

1.4 N=4000
N=20000
N=100000

Fig. 2. PWARX identification: BFR on the first and on the second output
channel vs number of runs of Algorithm 1

discrimination method is used). Furthermore, the results
show that the estimated models become more accurate as the
number of training samples increases. The CPU times taken
to compute the polyhedral partition are reported in Table III,
which shows that, for a large training set (i.e., N = 100000),
the off-line RPSN and the on-line ASGD method are about
300x and 1600x faster, respectively, than the robust linear
programming method of [8].

B. Identification of an LPV system
Let the data be collected from the MIMO LPV system
[

y1(k)
y2(k)

]

=
[

ā1,1(p(k)) ā1,2(p(k))
ā2,1(p(k)) ā2,2(p(k))

] [

y1(k−1)

y2(k−1)

]

+
[

b̄1,1(p(k)) b̄1,2(p(k))

b̄2,1(p(k)) b̄2,2(p(k))

] [

u1(k−1)

u2(k−1)

]

+ eo(k),

(18)

where

ā1,1(p(k)) =

⎧
⎨

⎩

−0.3 if 0.4 (p1(k) + p2(k)) ≤ −0.3,
0.3 if 0.4 (p1(k) + p2(k)) ≥ 0.3,
0.4 (p1(k) + p2(k)) otherwise,

ā1,2(p(k)) = 0.5 (|p1(k)|+ |p2(k)|) ,
ā2,1(p(k)) = p1(k)− p2(k),

ā2,2(p(k)) =

⎧
⎨

⎩

0.5 if p1(k) < 0,
0 if p1(k) = 0,

−0.5 if p1(k) > 0,

b̄1,1(p(k)) = 3p1(k) + p2(k),

b̄1,2(p(k)) =

{
0.5 if 2

(
p21(k) + p22(k)

)
≥ 0.5,

2
(
p21(k) + p22(k)

)
otherwise,

b̄2,1(p(k)) = 2 sin {p1(k)− p2(k)} ,
b̄2,2(p(k)) = 0.

Both the input u(k) and the scheduling vector p(k) are white
noise sequences (independent of each other) of length N =
11000 with uniform distribution in the boxes [−0.5 0.5]×
[−0.5 0.5] and [−1 1] × [−1 1], respectively. The noise
covariance matrix of eo(k) ∈ R2 is Λe = [0.25 0

0 0.25]. This
corresponds to signal-to-noise ratios on the first and on the
second output channel equal to SNR1 = 4 dB and SNR2 = 7
dB, respectively.

Fig. 3. LPV identification: polyhedral partition of the scheduling vector
space P

The goal is to estimate, from the gathered data, a PWA
approximation of the p-dependent nonlinear functions āi,j
and b̄i,j defining the behaviour of the LPV data-generating
system (18).

1) Choice of the number of modes: The number s of
polyhedral regions defining the partition of the scheduling
vector space P = [−1 1]× [−1 1] is chosen through cross
validation. Specifically, the 11000-length training data set is
split into two disjoint sets. The first 10000 samples are used
to estimate a PWA approximation of āi,j and b̄i,j , along
with the polyhedral partition of the scheduling vector space
P , for different values of s in the range 5–30. For each
value of s, the identification Algorithm 1 is run 10 times.
The second part of training data (i.e., the remaining 1000
samples) is used to assess the quality of the identified LPV
models. For each value of s, the BFR on the two output
channels is computed. Among the identified LPV models,
the one providing the largest aggregated BFRT = BFR1 +
BFR2 is selected, which corresponds to s = 10 polyhedral
regions. The computed polyhedral partition, obtained by
solving problem (13) through the regularized piecewise-
smooth Newton method explained in [6], is plotted in Fig. 3
(the Hybrid Toolbox for MATLAB [4] has been used to plot
the polytopes in Fig. 3).

2) Model quality assessment: The quality of the estimated
LPV model is then assessed w.r.t. a validation dataset,
consisting of a new sequence of NV = 2000 noiseless
samples used neither to estimate the LPV model nor to
select the number of modes s. For the sake of comparison,
the nonlinear coefficient functions āi,j(p(k)) and b̄i,j(p(k))
are also estimated through the parametric LPV identification
approach proposed in [3], by parameterizing the nonlinear
functions āi,j(p(k)) and b̄i,j(p(k)) as fourth-order polyno-
mials in the two-dimensional scheduling vector p(k).

The true outputs yo and the simulated output sequences ŷ
of the estimated LPV models are plotted in Fig. 4, along
with the simulation error yo(k) − ŷ(k). For the sake of
visualization, only the samples from time 101 to 200 related
to the second channel are reported. The BFR and MSE on the

[3] = Bamieh, Giarré (2002)

time (samples)
120 140 160 180 200

y o
,ŷ

-2

0

2

(a) Second output channel (output signal): black = true, red = PWA
regression, green =polynomial parametrization [3]

time (samples)
120 140 160 180 200

y o
−
ŷ

-2

-1

0

1

(b) Second output channel (simulation error): red = PWA regression,
green =polynomial parametrization [3]

Fig. 4. LPV: output signal and simulation error on the second output channel.

TABLE III
LPV: BFR OBTAINED WITH PWA REGRESSION AND POLYNOMIAL

PARAMETRIZATION [3]

BFR1 BFR2

PWA regression 87 % 84 %
parametric LPV [3] 80 % 70 %

modes s. For s = 10, the CPU time required to compute the
LPV model is 14 s, 0.4 s of which are spent to compute the
polyhedral partition via problem (11) (RLP discrimination
algorithm of [8] takes 4.2 seconds, i.e., almost 10x slower).

For a more exhaustive comparison between the RPSN
approach and the RLP algorithm of [8], the CPU time
required by the two algorithms to partition the scheduling
parameter space is plotted, as a function of s, in Fig. 5.
Fig. 5 also shows the CPU time required by the ASGD
algorithm in [6] to compute the solution of problem (12).
The weights πi and the initial estimate used by the aver-
aged stochastic gradient descent algorithm are computed by
solving problem (11) on the first 1000 training samples. The
remaining 9000 training samples are processed recursively.
The regularization parameter λ in problems (11) and (12)
is set to 10−5. Results in Fig. 5 show that: (i) the CPU
time required by all of the three discrimination algorithms
to partition the scheduling vector space increases with the
number of modes s (Fig. 5), as the number of parameters ξ
defining the piecewise affine separator φ(x) in (9) increases
linearly with s; (ii) the (offline) RPSN method and the
(online) ASGD method used to solve problem (11) and (12),
respectively, are faster (from 6x to 20x) than the robust linear
programming based approach of [8].

V. CONCLUSIONS

In this paper we have reviewed the PWA regression
algorithm introduced in [6], and discussed its application to
the identification of PWARX and LPV systems. Through the
examples, it has been shown that the presented approach is
computationally effective for off-line and on-line learning
of PWARX and LPV models. Future research includes the
extension of the PWA regression algorithm presented in

s
5 10 15 20 25 30

tim
e

[s
]

10-2
10-1
100
101
102

Fig. 5. LPV: CPU time vs number of modes (s). (black dashed: RLP [8];
red: RPSN; blue dash-dot: ASGN).

the paper to the identification of hybrid and LPV systems
under different noise conditions and the generalization to
piecewise-nonlinear models (such as piecewise polynomial).

REFERENCES

[1] S.T. Alexander and A.L. Ghirnikar. A method for recursive least
squares filtering based upon an inverse QR decomposition. IEEE
Trans. Signal Processing, 41(1):20–30, 1993.

[2] L. Bako, K. Boukharouba, E. Duviella, and S. Lecoeuche. A recursive
identification algorithm for switched linear/affine models. Nonlinear
Analysis: Hybrid Systems, 5(2):242–253, 2011.

[3] B. A. Bamieh and L. Giarré. Identification of linear parameter-
varying models. International Journal of Robust Nonlinear Control,
12(9):841–853, 2002.

[4] A. Bemporad. Hybrid Toolbox - User’s Guide, 2004. url:
http://cse.lab.imtlucca.it/ bemporad/hybrid/toolbox.

[5] A. Bemporad, D. Bernardini, and P. Patrinos. A convex feasibility
approach to anytime model predictive control. Technical report, 2015.
http://arxiv.org/abs/1502.07974.

[6] A. Bemporad, V. Breschi, and D. Piga. Piecewise affine regression
via recursive multiple least squares and multicategory discrimination.
Technical report, 2016. Submitted to Automatica. Available at: http:
//www.dariopiga.com/TR/TR_PWAReg_BBP_2015.pdf.

[7] A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino. A bounded-error
approach to piecewise affine system identification. IEEE Transactions
on Automatic Control, 50(10):1567–1580, 2005.

[8] K.P. Bennett and O.L. Mangasarian. Multicategory discrimination via
linear programming. Opt. Methods and Software, 3:27–39, 1994.

[9] G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari. A
clustering technique for the identification of piecewise affine systems.
Automatica, 39(2):205–217, 2003.

[10] A. L. Juloski, S. Weiland, and W. P. M. H. Heemels. A bayesian
approach to identification of hybrid systems. IEEE Transactions on
Automatic Control, 50(10):1520–1533, 2005.

[11] H. Nakada, K. Takaba, and T. Katayama. Identification of piecewise
affine systems based on statistical clustering technique. Automatica,
41(5):905–913, 2005.

[12] H. Ohlsson and L. Ljung. Identification of switched linear regression
models using sum-of-norms regularization. Automatica, 49(4):1045–
1050, 2013.

[13] N. Ozay, C. Lagoa, and M. Sznaier. Set membership identification of
switched linear systems with known number of subsystems. Automat-
ica, 51:180–191, 2015.

[14] S. Paoletti, A. L. Juloski, G. Ferrari-Trecate, and R. Vidal. Identi-
fication of hybrid systems a tutorial. European journal of control,
13(2):242–260, 2007.

[15] M. Petreczky and L. Bako. On the notion of persistence of excitation
for linear switched systems. In 50th Conference on Decision and
Control, pages 1840–1847, Orlando, FL, 2011.

[16] M. Petreczky, Laurent L.B̃ako, and S. A. Lecoeuche. Minimality and
identifiability of SARX systems. In 16th IFAC Symposium on System
Identification, pages 541–546, Brussels, Belgium, 2012.

[17] D. Piga, P. Cox, R. Tóth, and V. Laurain. LPV system identification
under noise corrupted scheduling and output signal observations.
Automatica, 53:329–338, 2015.

[18] J. Roll, A. Bemporad, and L. Ljung. Identification of piecewise affine
systems via mixed-integer programming. Automatica, 40(1):37–50,
2004.

2637

time (samples)
110 120 130 140 150 160 170 180 190 200

y
o
,ŷ

-0.2

0

0.2

0.4

0.6

0.8

(a) First output channel (output signal): black = true, red = estimated
time (samples)

110 120 130 140 150 160 170 180 190 200

y
o
−

ŷ

-0.04

-0.02

0

0.02

0.04

(b) First output channel (simulation error)

Fig. 1. PWARX identification: output signal and simulation error on the first output channel

TABLE IV
LPV IDENTIFICATION: BFR AND MSE OF THE LPV MODELS

ESTIMATED BY USING THE PROPOSED PWA REGRESSION APPROACH

AND THE PARAMETRIC LPV IDENTIFICATION APPROACH OF [3]

BFR1 BFR2 MSE1 MSE2

PWA regression 87 % 84 % 6.9·10−3 13.9·10−3

parametric LPV [3] 80 % 70 % 17.5·10−3 46.3·10−3

two output channels are reported in Table IV. The obtained
results show that the proposed LPV identification approach
based on the PWA approximation of the coefficient functions
āi,j(p(k)) and b̄i,j(p(k))) outperforms the parametric LPV
identification approach in [3].

We also remark that the “online” computational time
required to evaluate the output of the LPV model, given
the current value of the scheduling vector p̄ and the past
input/output observations is about 120 µs, 40 µs of which
are required to evaluate which region the current scheduling
vector belongs to. Note that the latter step requires to
compute the maximum of s = 10 affine functions {φi(p̄)}si=1

defining the piecewise affine separator φ(p̄) in (10). This
relatively “low” online computational time is mainly due to
the PWA structure of the coefficient functions describing the
LPV model, and it allows to use the estimated LPV model
in applications requiring a “fast” online determination of the
operating mode, such as in gain scheduling or in LPV model
predictive control.

3) Performance of multi-category discrimination algo-
rithms: The CPU time required to estimate the LPV model
through the proposed PWA regression approach is 759 s.
This includes the cross-validation phase to compute the
number of modes s. For s = 10, the CPU time required
to compute the LPV model is 14 s, 0.4 s of which are spent
to compute the polyhedral partition via problem (13) (the
robust linear programming multicategorical discrimination
algorithm of [8] takes 4.2 seconds, i.e., almost 10x slower).

For a more exhaustive comparison between the regularized
piecewise-smooth Newton approach used to solve prob-
lem (13) and the robust linear programming algorithm of [8],
the CPU time required by the two algorithms to partition
the scheduling parameter space is plotted, as a function of
s, in Fig. 5. Fig. 5 also shows the CPU time required by
the averaged stochastic gradient descent algorithm in [6] to
compute the solution of problem (14). The weights πi and
the initial estimate used by the averaged stochastic gradient

descent algorithm are computed by solving problem (13)
on the first 1000 training samples. The remaining 9000
training samples are processed recursively. The regularization
parameter λ in problems (13) and (14) is set to 10−5.

In order to test the performance of the three multicategory
discrimination algorithms in terms of model accuracy, the
aggregate best fit rate BFRT obtained by using the three
algorithms is plotted, as a function of s, in Fig. 6. Results
in Figs. 5 and 6 show that:

• the CPU time required by all of the three discrimination
algorithms to partition the scheduling vector space in-
creases with the number of modes s (Fig. 5). This is due
to the fact that the number of parameters ξ defining the
piecewise affine separator φ(x) in (10) increases linearly
with s;

• the (offline) regularized piecewise-smooth Newton
method and the (online) average stochastic gradient
method used to solve problem (13) and (14), respec-
tively, are faster (from 6x to 20x) than the robust linear
programming based approach of [8].

• in terms of model accuracy, the robust linear program-
ming approach of [8] and the regularized piecewise-
smooth Newton method achieve similar performance
(Fig. 6), while, for s = 11, s = 14 and s = 20,
the averaged stochastic gradient descent algorithm does
not provide an accurate partition of the scheduling
vector space, leading to LPV models with an aggregate
best fit rates smaller than 1.1. This means that, for
s = 11, 14, 20 the solution of the averaged stochastic
gradient descent algorithm fails to converge to the batch
solution of problem (13) when only N = 10000 training
samples are used.

s
5 10 15 20 25 30

tim
e

[s
]

100

105 RLP [8]
RPSN
ASGD

Fig. 5. LPV identification: CPU time required to partition the scheduling
vector space vs number of modes (s).

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 European Control Conference.
Received October 20, 2015.

validation data (open-loop)

• Identification	of	piecewise-linear	LPV-ARX	model

identification of Hybrid Systems with logic states
• Identification	of	hybrid	models	from	data

77

Identification of a switching RC
circuit

Mode = 1
S1 = ON
S2 = ON

Mode = 2
S1 = OFF
S2 = OFF

Mode = 3
S1 = ON
S2 = OFF

V

out

(k)  1 V V

out

(k) � 4 V

V

out

(k)  2 V

+
�

V

in

R1

+

�

V

out

C

R2

S1

R3

S2

Validation set of N
V

= 2000 samples:
BFR = 98.64 %

Results IMT Lucca - V.Breschi,D.Piga,A.Bemporad 16/18

Identification of a switching RC
circuit

Mode = 1
S1 = ON
S2 = ON

Mode = 2
S1 = OFF
S2 = OFF

Mode = 3
S1 = ON
S2 = OFF

V

out

(k)  1 V V

out

(k) � 4 V

V

out

(k)  2 V

Mode = 1
S1 = ON
S2 = ON

Mode = 2
S1 = OFF
S2 = OFF

Mode = 3
S1 = ON
S2 = OFF

ŷ(k)  0.98 V ŷ(k) � 4.01 V

ŷ(k)  1.98 V

CPU time to compute the partitions: 0.033 s
CPU required to identify the DHA: 0.078 s⇤

⇤
MATLAB R2015a, MacBook Pro 2.8 GHz processor

Results IMT Lucca - V.Breschi,D.Piga,A.Bemporad 15/18

Identification of a switching RC
circuit

Mode = 1
S1 = ON
S2 = ON

Mode = 2
S1 = OFF
S2 = OFF

Mode = 3
S1 = ON
S2 = OFF

V

out

(k)  1 V V

out

(k) � 4 V

V

out

(k)  2 V

+
�

V

in

R1

+

�

V

out

C

R2

S1

R3

S2

Validation set of N
V

= 2000 samples:
BFR = 98.64 %

Results IMT Lucca - V.Breschi,D.Piga,A.Bemporad 16/18

Identification of a switching RC
circuit

Mode = 1
S1 = ON
S2 = ON

Mode = 2
S1 = OFF
S2 = OFF

Mode = 3
S1 = ON
S2 = OFF

V

out

(k)  1 V V

out

(k) � 4 V

V

out

(k)  2 V

Mode = 1
S1 = ON
S2 = ON

Mode = 2
S1 = OFF
S2 = OFF

Mode = 3
S1 = ON
S2 = OFF

ŷ(k)  0.98 V ŷ(k) � 4.01 V

ŷ(k)  1.98 V

CPU time to compute the partitions: 0.033 s
CPU required to identify the DHA: 0.078 s⇤

⇤
MATLAB R2015a, MacBook Pro 2.8 GHz processor

Results IMT Lucca - V.Breschi,D.Piga,A.Bemporad 15/18

Identification of a switching RC
circuit

Mode = 1
S1 = ON
S2 = ON

Mode = 2
S1 = OFF
S2 = OFF

Mode = 3
S1 = ON
S2 = OFF

V

out

(k)  1 V V

out

(k) � 4 V

V

out

(k)  2 V

+
�

V

in

R1

+

�

V

out

C

R2

S1

R3

S2

Validation set of N
V

= 2000 samples:
BFR = 98.64 %

Results IMT Lucca - V.Breschi,D.Piga,A.Bemporad 16/18

true system

identified
system

(Breschi,	Piga,	Bemporad,	CDC	2016)

Identification of a switching RC
circuit

+
�

V

in

R1

+

�

V

out

C

R2

S1

R3

S2
Mode = 1
S1 = ON
S2 = ON

Mode = 2
S1 = OFF
S2 = OFF

Mode = 3
S1 = ON
S2 = OFF

V

out

(k)  1 V V

out

(k) � 4 V

V

out

(k)  2 V

An Arduino board is used for:

I measuring the output
voltage;

I generating the input voltage;

I driving the switches.

Results IMT Lucca - V.Breschi,D.Piga,A.Bemporad 13/18

• MPC	is	a	very	versatile	technique	to	provide	“intelligence”	to	a	large	class	of	
cyber-physical	systems

• MPC	can	easily	handle	multiple	inputs	and	outputs,	hybrid	model	
abstractions,	constraints	on	variables	for	safety,	optimal	performance

Conclusions

78

Several	control	problems	in	real-world	cyber-physical	
systems	can	be	(and	many	are)	well	solved	by	MPC	!

http://cse.lab.imtlucca.it/~bemporad/publications/

•A	library	of	solvers	tailored	to	embedded	MPC	applications	is	available	that	
are	very	simple	to	code,	fast,	amenable	for	low-precision	arithmetic,	and	
with	proved	bounds	on	real-time	execution

• Routinely	used	in	the	process	industries	from	the	80‘s.
Increasingly	used	in	automotive,	aerospace,	energy,	...

http://cse.lab.imtlucca.it/~bemporad/publications/
http://cse.lab.imtlucca.it/~bemporad/publications/

79

ReferencesBibliography
General	references	on	MPC

[1]	D.Q.	Mayne,	“Model	predictive	control:	Recent	developments	and	future	promise,”	Automatica,	vol.	50,	n.12,	
p.	2967-2986,	2014

[2]	J.M.	Maciejowski,	Predictive	Control	with	Constraints,	Prentice	Hall,	Harlow,	UK,	2002.	

[3]	E.F.	Camacho	and	C.	Bordons,	Model	Predictive	Control,	Advanced	Textbooks	in	Control	and	Signal	Processing.	
Springer-Verlag,	London,	2nd	edition,	2004.	

[4]	A.	Bemporad,	M.	Morari,	and	N.	L.	Ricker,	Model	Predictive	Control	Toolbox	for	Matlab	–	User’s	Guide,	The	
Mathworks,	Inc.,	2004,	http://www.mathworks.com/access/helpdesk/help/toolbox/mpc/.

[5]	A.	Bemporad,	Hybrid	Toolbox	–	User’s	Guide,	Jan.	2004,	http://www.ing.unitn.it/~bemporad/
hybrid/toolbox	

[6]	D.Q.	Mayne,	J.B.	Rawlings,	C.V.	Rao,	and	P.O.M.	Scokaert,	“Constrained	model	predictive	control:	Stability	
and	optimality,”	Automatica,	vol.	36,	no.	6,	pp.	789-814,	June	2000.	

[7]	A.	Bemporad,	“Model-based	predictive	control	design:	New	trends	and	tools,”	in	Proc.	45th	IEEE	Conf.	on	
Decision	and	Control,	San	Diego,	CA,	2006.

80

ReferencesBibliography
MLD	and	HYSDEL	Modeling	

[1]	A.	Bemporad,	“Hybrid	Toolbox	–	User’s	Guide,’’	Dec.	2003,	http://cse.lab.imtlucca.it/~bemporad/hybrid/
toolbox

[2]	F.D.	Torrisi	and	A.	Bemporad,	“HYSDEL	-	A	tool	for	generating	computational	hybrid	models,”	IEEE	
Transactions	on	Control	Systems	Technology,	vol.	12,	no.	2,	pp.	235-249,	Mar.	2004

	
[3]	A.	Bemporad	and	M.	Morari,	“Control	of	systems	integrating	logic,	dynamics,	and	constraints,”	Automatica,	

vol.	35,	no.	3,	pp.	407-427,	Mar.	1999.	

[4]	A.	Bemporad,	“Efficient	conversion	of	mixed	logical	dynamical	systems	into	an	equivalent	piecewise	affine	
form,”	IEEE	Trans.	Automatic	Control,	vol.	49,	no.	5,	pp.	832-838,	2004.

[5]	A.	Bemporad,	G.	Ferrari-Trecate,	and	M.	Morari,	“Observability	and	controllability	of	piecewise	affine	and	
hybrid	systems,”	IEEE	Trans.	Automatic	Control,	vol.	45,	no.	10,	pp.	1864-1876,	2000.	

[6]	W.P.H.M	Heemels,	B.	de	Schutter,	and	A.	Bemporad,	“Equivalence	of	hybrid	dynamical	models,”	Automatica,	
vol.	37,	no.	7,	pp.	1085-1091,	July	2001

[7]	A.	Bemporad,	W.P.M.H.	Heemels,	and	B.	De	Schutter,	“On	hybrid	systems	and	closed-loop	MPC	systems,”	
IEEE	Trans.	Automatic	Control,	vol.	47,	no.	5,	pp.	863-869,	May	2002.	

81

ReferencesBibliography
Identification	of	hybrid	systems	

[8]	A.	Bemporad,	A.	Garulli,	S.	Paoletti,	and	A.	Vicino,	“A	bounded-error	approach	to	piecewise	affine	system	
identification,”	IEEE	Trans.	Automatic	Control,	vol.	50,	no.	10,	pp.	1567-1580,	Oct.	2005	.	

[9]	J.	Roll,	A.	Bemporad,	and	L.	Ljung,	“Identification	of	piecewise	affine	systems	via	mixed-integer	programming,”	
Automatica,	vol.	40,	no.	1,	pp.	37-50,	2004

[10]	G.	Ferrari-Trecate,	M.	Muselli,	D.	Liberati,	and	M.	Morari,	“A	clustering	technique	for	the	identification	of	
piecewise	affine	systems,”	Automatica,	vol.	39,	no.	2,	pp.	205-217,	Feb.	2003.	

[11]	V.	Breschi,	D.	Piga,	and	A.	Bemporad,	“Piecewise	affine	regression	via	recursive	multiple	least	squares	and	
multicategory	discrimination,”	Automatica,	vol.	73,	pp.	155–162,	Nov.	2016.

Model	predictive	control	

[12]	F.	Borrelli,	M.	Baotic,	A.	Bemporad,	and	M.	Morari,	“Dynamic	programming	for	constrained	optimal	control	of	
discrete-time	linear	hybrid	systems,”	Automatica,	vol.	41,	no.	10,	Oct.	2005

[13]	A.	Bemporad,	M.	Morari,	V.	Dua,	and	E.N.	Pistikopoulos,	“The	explicit	linear	quadratic	regulator	for	constrained	
systems,”	Automatica,	vol.	38,	no.	1,	pp.	3-20,	2002.

	
[14]	A.	Bemporad,	“A	multiparametric	quadratic	programming	algorithm	with	polyhedral	computations	based	on	

nonnegative	least	squares,”	IEEE	Trans.	Automatic	Control,	vol.	60,	no.	11,	pp.	2892–2903,	2015.

[15]	A.	Bemporad,	F.	Borrelli,	and	M.	Morari,	“Piecewise	linear	optimal	controllers	for	hybrid	systems,”	In	Proc.	
American	Control	Conference,	2000,	pp.	1190-1194.

[16]	M.	Lazar,	M.	Heemels,	S.	Weiland,	A.	Bemporad,	“Stability	of	Hybrid	Model	Predictive	Control,”	IEEE	Trans.	
Automatic	Control,	vol.	51,	no.	11,	pp.	1813–1818,	2006.

http://cse.lab.imtlucca.it/~bemporad/publications/papers/automatica-pwa-regression.pdf
http://cse.lab.imtlucca.it/~bemporad/publications/papers/automatica-pwa-regression.pdf
http://cse.lab.imtlucca.it/~bemporad/publications/papers/automatica-pwa-regression.pdf
http://cse.lab.imtlucca.it/~bemporad/publications/papers/automatica-pwa-regression.pdf
http://cse.lab.imtlucca.it/~bemporad/publications/papers/ieeetac-mpqp_nnls.pdf
http://cse.lab.imtlucca.it/~bemporad/publications/papers/ieeetac-mpqp_nnls.pdf
http://cse.lab.imtlucca.it/~bemporad/publications/papers/ieeetac-mpqp_nnls.pdf
http://cse.lab.imtlucca.it/~bemporad/publications/papers/ieeetac-mpqp_nnls.pdf

82

ReferencesBibliography
Reachability	and	observability	

[17]	A.	Bemporad,	G.	Ferrari-Trecate,	and	M.	Morari,	“Observability	and	controllability	of	piecewise	affine	and	hybrid	
systems,”	IEEE	TAC,	vol.	45,	no.	10,	pp.	1864-1876,	2000.	

[18]	A.	Bemporad,	D.	Mignone,	and	M.	Morari,	“Moving	horizon	estimation	for	hybrid	systems	and	fault	detection,”	in	
Proc.	American	Control	Conf.,	1999,	Chicago,	IL,	pp.	2471-2475.	

[19]	G.	Ferrari-Trecate,	D.	Mignone,	and	M.	Morari,	“Moving	horizon	estimation	for	hybrid	systems,”	IEEE	TAC,	vol.	47,	
no.	10,	pp.	1663-1676,	2002.	

Selected	automotive	applications	

[20]	F.	Borrelli,	A.	Bemporad,	M.	Fodor,	and	D.	Hrovat,	“An	MPC/Hybrid	System	Approach	to	Traction	Control,”IEEE	
Control	Syst.	Tech.,	vol.	14,	n.	3,	pp.	541-552,	2006.	

[21]	S.	Di	Cairano,	H.E.	Tseng,	D.	Bernardini,	and	A.	Bemporad,	“Vehicle	yaw	stability	control	by	coordinating	active	
front	steering	and	differential	braking	in	the	tire	sideslip	angles	domain,”	IEEE	Trans.	Contr.	Systems	Technology,	
vol.	21,	no.	4,	pp.	1236–1248,	July	2013.

[22]	N.	Giorgetti,	A.	Bemporad,	H.	E.	Tseng,	and	D.	Hrovat,	“Hybrid	model	predictive	control	application	towards	
optimal	semi-active	suspension,”International	Journal	of	Control,	vol.	79,	no.	5,	pp.	521–533,	2006.

[23]	S.	Di	Cairano,	D.	Bernardini,	A.	Bemporad,	and	I.V.	Kolmanovsky,	“Stochastic	MPC	with	learning	for	driver-
predictive	vehicle	control	and	its	application	to	HEV	energy	management,”	IEEE	Trans.	Contr.	Systems	
Technology,	vol.	22,	pp.	1018–1031,	2014.

http://cse.lab.imtlucca.it/~bemporad/publications

http://cse.lab.imtlucca.it/~bemporad/publications/papers/ieeecst-steering.pdf
http://cse.lab.imtlucca.it/~bemporad/publications/papers/ieeecst-steering.pdf
http://cse.lab.imtlucca.it/~bemporad/publications/papers/ieeecst-steering.pdf
http://cse.lab.imtlucca.it/~bemporad/publications/papers/ieeecst-steering.pdf
http://cse.lab.imtlucca.it/~bemporad/publications/papers/ieeecst-learning.pdf
http://cse.lab.imtlucca.it/~bemporad/publications/papers/ieeecst-learning.pdf
http://cse.lab.imtlucca.it/~bemporad/publications/papers/ieeecst-learning.pdf
http://cse.lab.imtlucca.it/~bemporad/publications/papers/ieeecst-learning.pdf
http://cse.lab.imtlucca.it/~bemporad/publications
http://cse.lab.imtlucca.it/~bemporad/publications

